

Design Enumeration through Projection
and

Isomorphism Examination Based on
Counting Vector

國立清華大學統計研究所

博士論文

指導教授： 鄭少為 博 士

博 士 生： 林 長 鋆

中 華 民 國 九十八 年 一 月

中文摘要

在實驗設計的研究中，設計完整列舉與同構檢驗是兩項很困難的工作。雖然這是

兩項不同的工作，但彼此之間卻有很密切的關係。設計完整列舉是指生成所有不

同構的設計，如所有的正規設計或所有的直交陣列等。而同構檢驗則是比較兩個

設計是否可經由行列或是水準互換而得到相同結構。在列舉所有的設計時，經常

在某階段需要透過同構檢驗來減少多餘的計算。本篇論文包含兩個主要的部份。

在第一個部份，我們基於指標函數和投影理論，提出一個組裝法來列舉所有的兩

水準設計。此組裝法利用一個層級的結構而逐步地生成所有的設計。我們亦對此

組裝法發展了一個演算法，來完整地生成所有非同構的設計。在第二個部份，我

們提出利用計數向量的同構檢驗法。我們亦證明了此方法比文獻中曾提出的許多

同構檢驗法更有效率。我們亦使用設計投影的技巧來更進一步改善檢驗的效率。

Abstract

Design enumeration and isomorphism examination are two difficult tasks in the

study of experimental design. The two tasks are different but often related to

each other. Design enumeration is concerned with the complete generation of

certain types of designs, such as regular designs or orthogonal arrays. Isomor-

phism examination, on the other hand, compares whether two designs have the

same structure subject to some row and column operations. During the process

of design enumeration, it is often required to perform isomorphism examination

at some stage to reduce the possible redundant calculation. This dissertation

includes two main parts. In the first part, we propose an assembly method based

on the indicator function and the projection to enumerate all non-isomorphic

two-level designs. The assembly method allows us to generate all designs sequen-

tially in a hierarchical structure. We present an algorithm based on the assembly

method and generate a complete catalogue of non-isomorphic designs for some

cases. In the second part, we develop an initial screening method based on the

counting vector for isomorphism examination. We prove that the method pro-

vides a more efficient examination than some methods proposed in other articles.

The technique of projection is also applied to improve the examination efficiency.

誌謝辭

首先我要感謝鄭少為老師給我的指導及幫助，使得此篇論文可以順利地完成。並

感謝所有口試委員的指正及建議，使得論文內容更加完整。另外，感謝所有教授

我統計學理的老師，使我建立良好的統計基礎。也感謝研究所同學的協助，解決

我許多生活及學習上的疑惑。當然，我要感謝我的父母及岳父母，培養我良好的

品格及積極向上的進取心。還有，我要感謝我的太太筱晴，無條件的支持我，並

陪我走過這些日子。最後我要感謝我兩個可愛的兒子和女兒，他們總是帶給我歡

笑及對人生的希望。

Contents

1 Introduction 3

2 Design enumeration through projection 6

2.1 Introduction . 6

2.2 Review . 8

2.2.1 Design enumeration and isomorphic examination 8

2.2.2 Indicator function and J-characteristics 9

2.3 Design enumeration . 12

2.3.1 Incomplete indicator function 14

2.3.2 Assembly method . 17

2.3.3 An example . 19

2.3.4 Hierarchical structure . 21

2.4 Isomorphism examination . 24

2.4.1 Method based on group structure 24

2.4.2 Projective index set . 26

2.5 Algorithm and results . 28

2.5.1 Algorithm . 28

2.5.2 Some results . 30

3 Isomorphism examination based on counting vector 36

3.1 Introduction . 36

3.2 Isomorphism of counting vectors 43

1

3.3 Examination measure based on counting vectors 54

3.3.1 Split-N vectors . 54

3.3.2 Split-N matrix . 59

3.3.3 Projection . 62

3.3.4 Simplified methods . 64

3.4 Some comparisons . 66

4 Summary 74

2

Chapter 1

Introduction

Design enumeration and isomorphism examination are two difficult and time-

consuming tasks in the study of experimental design. The two tasks are different

but often related to each other. Design enumeration is concerned with the com-

plete generation of certain types of designs, such as regular designs or orthogonal

arrays. Isomorphism examination, on the other hand, compares whether two de-

signs have the same structure subject to some row and column permutations and

level exchange. During the process of design enumeration, it is often required to

perform isomorphism examination at some stage to reduce the possible redundant

calculation. In practice, design enumeration and isomorphism examination are

also important issues in the search of optimal designs, such as minimum aberra-

tion designs. Since isomorphic designs share the same statistical properties, it is

enough to choose one design matrix to represent the whole group of isomorphic

designs. It can significantly reduce the computation for finding optimal designs

by only searching among these chosen designs. If a complete catalogue of all

non-isomorphic designs is not available, we may get a design that is not globally

optimal. Therefore, design enumeration and isomorphism examination play im-

portant roles in the exploration of optimal designs.

In Chapter 2, we study the methods about the design enumeration. For the

3

regular design, which can be characterized in terms of a group structure, the

complete enumeration can be achieved by considering all possible combinations

of group generators. However, for the non-regular designs, the task of design enu-

meration becomes much more difficult because the group structure is no longer

available. To tackle this problem, we employ the indicator function approach.

The indicator function is a polynomial representative of a design matrix and can

be applied on designs with or without a group structure. In addition, we employ

the technique of projection to construct all possible designs. Based on the indi-

cator function and projection technique, we propose an assembly method which

allows us to generate the design by assembling the indicator functions of the

projections. We find that there exists a hierarchical structure between the pro-

jections and the designs generated from them. This hierarchical structure makes

it possible to sequentially construct all designs through the assembly method. By

applying these methods, we can efficiently enumerate all non-isomorphic designs

for many cases.

The projection index set is an accompaniment naturally appeared in the as-

sembled method. We utilize it to perform an initial isomorphism examination for

the designs constructed by the assembly method in Chapter 2 to save computa-

tion time. However, when the run size and the number of factors are lager, the

isomorphism examination based on the projective index set becomes inefficient.

It then calls for the development of better methods for isomorphism examination.

In Chapter 3, we propose an innovative method that can significantly im-

prove the efficiency of the isomorphism examination. In this chapter, we study the

relationship between two isomorphism designs in terms of their counting vectors,

whose components represent the number of the replicates of the experimental

runs. We find that the operations of sign switch, column and row permutations

on the design matrix are related to the rearrangement of components of the count-

4

ing vector. Some sufficient and necessary conditions for two counting vectors to

be isomorphic are therefore developed. The conditions offer us a theoretical basis

to present an isomorphism examination measure, called the split-N matrix. The

split-N matrix is invariant to the sign switch, column and row permutations so

that it can be a measure for the isomorphism examination. We also find that

some existing measures for isomorphism examination can be expressed as a func-

tion of the split-N matrix. In other words, non-isomorphic designs that can be

distinguished by those measures can be classified by the split-N matrix, but not

the other way around. That is, split-N matrix has higher classification efficiency

than those measures. The technique of projection is also applied in the examina-

tion method based on the split-N matrix, which greatly improves the examination

efficiency. Some simplified methods are proposed for the designs with large num-

ber of factors. They may have lower efficiency than the split-N matrix but can

greatly reduce the computation time and the storage memory when the number

of factors is large.

5

Chapter 2

Design enumeration through

projection

2.1 Introduction

Early works on design enumeration focused on regular designs. Because regular

designs possess a group structure, its enumeration can be more easily imple-

mented by considering all possible combinations of group generators. For a 2k−m

regular design, the number of its possible combinations of group generators is less

than (2k−1
m). Although the number could be large for designs with larger run sizes

and more factors, we at least know how to construct all designs in the case of

regular designs. For non-regular designs, the task of design enumeration becomes

much more difficult because the group structure is no longer available. Recently,

a new mathematical framework for design theory called indicator function was

developed for non-regular designs. An indicator function is a polynomial repre-

sentative of a design matrix and it can be applied on designs with or without a

group structure. Through indicator function approach, the enumeration of non-

regular designs can be translated into a problem of finding all coefficients of a

polynomial that can constitute an indicator function.

6

We denote by OA(n, k, s, d) an n×k matrix which can represent an orthogo-

nal array with n runs, k factors each with s levels, and strength d. The run size n

of an OA of strength d must be a multiple of sd. Two OAs are called isomorphic

if one can be obtained from the other by row (run) permutation, column (factor)

permutation and level exchange (or sign switch when s = 2). To use the defini-

tion to check whether two OA(n, k, s, d)’s are isomorphic, we must compare at

most n!k!(s!)k design matrices. For instance, it requires 16!15!215 ≈ 8.97 × 1029

comparisons for two non-isomorphic OA(16, 15, 2, 2)’s. The isomorphism exami-

nation of two designs based on the original definition is very time consuming when

the run size or the number of factors is large. The indicator function approach

is also useful in dealing with this issue. For example, suppose that design D′ is

derived from design D only through row permutation. Their indicator functions

are identical. This property makes it easier to discuss the isomorphism of designs

in terms of their indicator functions.

In this chapter, we propose a method to enumerate non-isomorphic two-level

designs. The method includes two main parts. The first part is a projection

approach to construct all indicator functions. Based on the relationship existing

among the projections of a design, we propose an assembly method to sequen-

tially generate indicator functions in a hierarchical order. The second part is an

isomorphism examination that utilizes some projection properties.

The remainder of this chapter is organized as follows. Section 2.2 reviews

some works on the subjects of isomorphism examination and design enumeration.

Indicator function is also introduced in this section. Section 2.3 introduces the

assembly method and a hierarchical structure for sequential generation of designs.

Section 2.4 provides two methods for isomorphism examination. Section 2.5 gives

an algorithm which is developed based on materials in Section 2.3 and Section

2.4. Some computational results are also given in this section.

7

2.2 Review

We review some works on design enumeration and isomorphic examination in this

section. A recently developed mathematic framework for design theory, indicator

function, and its application on design enumeration and isomorphism examina-

tion are also introduced.

2.2.1 Design enumeration and isomorphic examination

Most works of design enumeration in literature were accomplished case by case.

For example, Seiden and Zemach (1966) gave a complete enumeration ofOA(n, d+

1, 2, d). Fujii, Namikawa and Yamamoto (1989) completely enumeratedOA(2d+1, d+

2, 2, d) and OA(2d+1, d+3, 2, d). Chen, Sun and Wu (1993) explored the algebraic

structure of regular designs and gave a collection of regular designs with 16, 32

and 64 runs through an exhaustive computer search. Lam and Tonchev (1996)

completely enumerated all OA(27, 12, 3, 2). Hedayat, Seiden and Stufken (1997)

enumerated all OA(54, 5, 3, 3). Yumiba, Hyodo and Yamamoto (1997) classi-

fied all OA(24, 6, 2, 2). Yamamoto, Fujii, Hyodo and Yumiba (1992a, 1992b)

and Hedayat, Sloane and Stufken (1999) enumerated all OA(n, n − 1, 2, 2)’s for

n = 4, 8, 12, 16, 20, 24. Sun, Li and Ye (2002) also succeeded in enumerating non-

isomorphic OA(n, k, 2, 2)’s for n = 12, 16, 20 and arbitrary k through a thorough

computer search. Xu (2005) gave a complete catalogue of three-level regular frac-

tional factorial designs with 27, 81, 243 and 279 runs. The method of enumerating

non-isomorphic OA(n, d+2, 2, d) was demonstrated by Stufken and Tang (2007).

They applied the properties of J-characteristic to solve an equation under some

constraints, of which each solution represents a class of isomorphic designs.

8

Some isomorphism examination methods were proposed for both regular and

non-regular designs recently. Clark and Dean (2001) introduced the Hamming

distance, which records the number of differences between two rows in a design.

Through Hamming distance, one can distinguish two designs if they are non-

isomorphic or find their permutation relationship if they are isomorphic. Clark

and Dean (2001) also provided the necessary and sufficient conditions for iso-

morphism of two-level fractional factorial designs. Ma, Fang and Lin (2001)

combined Hamming distance and the measures of uniformity, called CD2
2, to de-

velop a p-dimensional CD2
2 projection frequency, which records the CD2

2-values of

all p-factor projections of a design. According to the projection frequency, some

non-isomorphic designs can be distinguished. Although they conjectured that it

is a sufficient condition for isomorphism, it has been shown that this method fails

for some cases. Xu (2005) introduced the coding theory approach for three-level

regular fractional factorial designs and defined the power moments, Ku, by calcu-

lating the number of coincidences between two rows. Similar to Ma, Fang and Lin

(2001), Xu (2005) obtained p-dimensional Ku projection frequency by projecting

a design to arbitrary p factors. Whenever two designs have different p-dimensional

Ku projection frequency for some u and p, they must be non-isomorphic.

2.2.2 Indicator function and J-characteristics

Indicator function was first defined in Fontana, Pistone and Rogantin (2000) for

studying two-level fractional factorial designs without replicates. Ye (2003) ex-

tended it to two-level fractional factorial designs with replicates. Recently, Cheng

and Ye (2004) generalized it to designs with more than two levels. Indicator func-

tion for two-level designs can be briefly described as follows. Let G be a 2k full

factorial design with levels labeled by −1 and 1. The design points of G can be

regarded as the solutions of the polynomial system x2
i − 1 = 0, i = 1, 2, · · · , k.

Let T = {1, 2, · · · , k} denote the collection of factors of G. For any non-empty

9

subset t of T , define

Ct(x) =
∏
j∈t

xj

and Cø(x) = 1 for x ∈ G. Let D be a k-factor fractional factorial design (i.e.,

D ⊆ G), in which a design point in G is allowed to appear more than once.

The indicator function of D, denoted by FD(x), is defined to be the number of

appearance of x in D for every x ∈ G. It was shown in Ye (2003) that FD(x) can

be expressed as: ∑
t⊆T

btCt, (2.1)

where

bt = 2−k
∑
x∈D

Ct. (2.2)

We denote the term with the highest order in FD(x) by CT and the coefficient of

CT by bT . The CT is the only term in FD with order k. Every indicator function

can be expressed as a polynomial in which every term is of the form xd11 · · · · ·x
dk
k ,

where d1, · · · , dk ∈ {0, 1}. In the following context, when we refer to polynomials,

we mean polynomials of such form.

Another theoretical structure parallel to indicator function is J-characteristics,

which were first introduced in Deng and Tang (1999) and Tang and Deng (1999)

but explicitly defined in Tang (2001). J-characteristics are similar to the coeffi-

cients in an indicator function, i.e., bt’s. Although J-characteristics do not utilize

the polynomial framework as indicator function approach does, they play very

similar roles in design theory. Stufken and Tang (2007) applied J-characteristics

to enumerate all non-isomorphic OA(n, k, 2, d) for the case k = d + 2. From the

viewpoint of indicator function, their method can be described as follows. The

indicator function of an OA of strength d has the property that bφ = n/2k and

bt = 0 for all nonempty t with ‖t‖ ≤ d, where ‖t‖ is the number of elements

in t. In the indicator function of an OA(n, k = d + 2, 2, d), there are k t’s with

‖t‖ = d+ 1 and only one t with ‖t‖ = d+ 2. We denote the bt’s with ‖t‖ ≥ d+ 1

10

by bt1 , bt2 , · · · , btk , btk+1
, where tp = T −{k+1−p} for p = 1, · · · , k and tk+1 = T .

Except bφ, the bt1 , · · · , btk+1
are the only coefficients that can be non-zero in the

indicator function of an OA(n, k = d + 2, 2, d). Stufken and Tang (2007) proved

that:

1. when k is odd, every class of isomorphic OA(n, k = d+ 2, 2, d)’s contains a

unique array whose btp ’s satisfy

bt1 ≤ · · · ≤ btk−1
≤ −|btk |, btk+1

≤ 0; (2.3)

2. when k is even, every class of isomorphic OA(n, k = d + 2, 2, d)’s contains

a unique array whose btp ’s satisfy either

bt1 ≤ · · · ≤ btk−1
≤ −|btk+1

| (2.4)

or

bt1 ≤ · · · ≤ btk−1
≤ −|btk |, btk+1

< −|btk |. (2.5)

By substituting the design point 1 = (1, · · · , 1) into the indicator function of an

OA(n, k = d+ 2, 2, d), we can get

bφ + bt1 + bt2 + · · ·+ btk+1
= w, (2.6)

where w is the number of appearance of the design point 1, which must be a

non-negative integer. The complete set of non-isomorphic OA(n, k = d+2, 2, d)’s

can be obtained by solving equation (2.6) under constraint (2.3) for an odd k or

under constraint either (2.4) or (2.5) for an even k.

The method in Stufken and Tang (2007) simultaneously achieves two ob-

jectives: complete enumeration of designs and isomorphism examination. First,

because the solutions to equation (2.6) contain all possible combinations of coeffi-

cients, the method can construct all designs. Second, the constraints (2.3), (2.4),

11

or (2.5) make it possible that every class of isomorphic designs only appears once

in the search of the solutions. In other words, each solution of (2.6) under the

constraints must represent a design and the solutions of non-isomorphic designs

must be different. Hence, isomorphism examination becomes unnecessary, which

saves a lot of computation.

Unfortunately, the generalization of this method to the cases k > d + 2

is very difficult because of three reasons. First, when k > d + 2, the number

of the coefficients that could be non-zero increases dramatically. For instance,

when d = 2 and k = d + 4, we would need to handle (6
3) + (6

4) + (6
5) + (6

6) = 42

coefficients. It means that there would be 42 indeterminate terms in an equation

like (2.6). Second, some solutions of an equation like (2.6) do not represent a

design. Third, when k > d + 2, the relationship among the non-zero coefficients

becomes much more complicated. The constraints (2.3), (2.4), or (2.5) are not

enough to describe the relationship so that we may generate more solutions than

required. In other words, because some solutions are corresponding to designs

that are isomorphic, an isomorphism examination is inevitable. In view of these

problems, we take a different approach based on projection to tackle the problem

of design enumeration and isomorphism examination for k > d+ 2, which will be

presented in later sections.

2.3 Design enumeration

We will present in this section an innovative method based on projection for com-

plete design enumeration. Let D be an n × k design matrix and dj be the jth

column of D. Let D(−j) be the n× (k − 1) design matrix obtained by excluding

dj from D. We refer to D(−j) as a leave-one-out (LOO) projection of D. The

Figure 2.1 presents an example of a 3-factor design A and its three LOO pro-

jections. Suppose that FD(x) =
∑

t⊆T btCt is the indicator function of D. By

12

Figure 2.1: The 3-factor design A and its three LOO projections A(−1), A(−2)

and A(−3).

Theorem 1 in Ye (2003), the indicator function of D(−j) is

FD(−j)(x1, · · · , xj−1, xj+1, · · · , xk) =
∑

t⊆T(−j)

2btCt, (2.7)

where T(−j) = T − {j}. That is, the indicator function of D(−j) is obtained from

FD by doubling the coefficients and eliminating the terms whose suffixes include

factor j. Obviously, given FD, we can obtain k LOO indicator functions FD(−j),

j = 1, · · · , k, and each of them represents a (k − 1)-factor fractional factorial

design. Because D(−j) is a projection of D, the strength of D(−j) is at least as

high as the strength of D. Let F∗(n, k, 2, d) be the collection of all different

indicator functions of OA(n, k, 2, d)’s. Suppose that FD is an indicator func-

tion in F∗(n, k, 2, d). Its FD(−j) ’s must belong to F∗(n, k − 1, 2, d). If we have

F∗(n, k−1, 2, d), then by applying an assembly method given in Section 2.3.2 for

all possible combinations of the indicator functions in F∗(n, k − 1, 2, d), we can

construct F∗(n, k, 2, d). This hierarchical structure makes it possible to sequen-

tially generate all indicator functions.

13

2.3.1 Incomplete indicator function

A polynomial is called an incomplete indicator function if it is obtained from an

indicator function by deleting the highest-order term, bT CT . Indicator functions

of different designs may be corresponding to an identical incomplete indicator

function because there exist indicator functions whose coefficients are identical

except bT . Note that not every polynomial with bT = 0 is an incomplete indica-

tor function. A necessary and sufficient condition for a polynomial with bT = 0

to be an incomplete indicator function is that there must exist at least one b′T

such that the sum of the polynomial and b′T CT is a non-negative integer function.

Let F ′(x) be a polynomial with bT = 0. Let bwc be the largest integer that

is not more than w and dwe be the smallest integer that is not less than w. Let

y = min
x∈G s.t. CT (x)=1

F ′(x) and z = min
x∈G s.t. CT (x)=−1

F ′(x). Define

d(F ′(x)) =

 dF ′(x)e − F ′(x), for x ∈ G such that CT (x) = 1

F ′(x)− bF ′(x)c, for x ∈ G such that CT (x) = −1.

The following theorem offers the necessary and sufficient condition for F ′(x) to

be an incomplete indicator function.

Theorem 1. Let F ′(x) be a polynomial with bT = 0. The F ′(x) is an incomplete

indicator function if and only if

(a) d(F ′(x)) is constant for all x ∈ G, and

(b) y ≥ −z.

Proof. Suppose that F ′(x) is an incomplete indicator function. There exists an

indicator function F (x) and a bT such that

F (x) =

 F ′(x) + bT = F ′(x) + (bT − bbT c) + bbT c, for x ∈ G s.t. CT (x) = 1

F ′(x)− bT = F ′(x)− (bT − bbT c)− bbT c, for x ∈ G s.t. CT (x) = −1.

14

It can be written as

bT−bbT c =

 (F (x)− bbT c)− F ′(x) = dF ′(x)e − F ′(x), for x ∈ G s.t. CT (x) = 1

F ′(x)− (F (x) + bbT c) = F ′(x)− bF ′(x)c, for x ∈ G s.t. CT (x) = −1.

Therefore, d(F ′(x)) = bT − bbT c, which is constant for all x ∈ G. The condition

(a) is proved. Because F (x) is an indicator function, we have

F (x) =

 F ′(x) + bT ≥ 0, for x ∈ G s.t. CT (x) = 1

F ′(x)− bT ≥ 0, for x ∈ G s.t. CT (x) = −1.

Therefore, we have y+bT ≥ 0 and z−bT ≥ 0, i.e., y ≥ −bT ≥ −z. The condition

(b) follows. Conversely, if y ≤ 0, then z − (−y) ≥ 0 by (b). Let bT = −y. Then,

y + bT = 0 and z − bT ≥ 0. If z ≤ 0, then y + z ≥ 0 by (b). Let bT = z.

Then, z − bT = 0 and y + bT ≥ 0. If y ≥ 0 and z ≥ 0, let bT = z . Then

z − bT = 0 and y + bT ≥ 0. Since y = minx∈G s.t. CT (x)=1 F
′(x), y + bT ≥ 0

ensures that F ′(x) + bT ≥ 0 for all x ∈ G such that CT (x) = 1. Similarly, since

z = minx∈G s.t. CT (x)=−1 F
′(x), z − bT ≥ 0 ensures that F ′(x) − bT ≥ 0 for all

x ∈ G such that CT (x) = −1. Hence, under the condition (b), there must exist a

bT such that F ′(x)+bT ≥ 0 for those x such that CT (x) = 1s and F ′(x)−bT ≥ 0

for those x such that CT (x) = −1s. By (a), if y + bT or z − bT is an integer, it

is clear that the F ′(x) + bT are integers for those x such that CT (x) = 1s and

F ′(x)− bT are integers for those x such that CT (x) = −1s. Hence, if (a) and (b)

hold, there must exist a bT such that F ′(x) + bT CT is an indicator function, i.e.,

F ′(x) is an incomplete indicator function.

For instance, suppose that T = {1, 2}. The polynomial F ′(x) = 3/4 −

2/4C1(x)− 5/4C2(x) is a polynomial with bT = 0 but not an incomplete indica-

tor function because for x = (1, 1), d(F ′(x)) = dF ′(x)e−F ′(x) = −1− (−1) = 0

but for x = (1,−1), d(F ′(x)) = F ′(x)− bF ′(x)c = 6/4− 1 = 2/4, which violates

the condition (a) in Theorem 1. For an incomplete indicator function, the follow-

ing theorem gives the possible values of bT ’s with which the incomplete indicator

15

function can become an indicator function.

Theorem 2. Let y and z be as defined in Theorem 1. Suppose that F ′(x) is an

incomplete indicator function. A bT can be used to form an indicator function

F (x) = F ′(x) + bT CT if and only if bT is a value in {−y,−y + 1, · · · , z − 1, z}.

Proof. First, let us prove that z − (−y) is a non-negative integer. Suppose that

there exist x1 and x2 such that y = F ′(x1) and z = F ′(x2). Because F ′(x)

is an incomplete indicator function, d(F ′(x1)) = d(F ′(x2)) by Theorem 1 (a).

Therefore,

z − (−y)=bzc+ (z − bzc) + dye − (dye − y)

=bzc+ d(F ′(x2)) + dye − d(F ′(x1))

=bzc+ dye,
which is an integer. By Theorem 1 (b), it is clear that bzc + dye ≥ 0. Any bT

such that both y+bT and z−bT are non-negative integers can be used to form an

indicator function. Hence, bT can be and must be any value in the intersection

of {−y,−y + 1,−y + 2, · · · } and {z, z − 1, z − 2, · · · }. Because z − (−y) is a

non-negative integer, we have {−y,−y + 1,−y + 2, · · · }
⋂
{z, z − 1, z − 2, · · · } =

{−y,−y + 1, · · · , z − 1, z}.

For instance, let T = {1, 2} and F ′(x) = 7/4 − 1/4C1(x) + 1/4C2(x). It is

clear that d(F ′(x)) = 1/4 for all x ∈ G and y > −z where y = 7/4 and z = 5/4.

According to Theorem 1, F ′(x) is an incomplete indicator function. To obtain

an indicator function from F ′(x), the b12 could be chosen from the following val-

ues −7/4(= −y), −3/4, 1/4, 5/4(= z) by Theorem 2. The two theorems play

important roles in the assembly method that will be introduced in next section.

Theorem 1 will be applied to check whether an assembled polynomial is an in-

complete indicator function. If the assembled polynomial passes the Theorem 1,

the values of bT given by Theorem 2 complement it to form an indicator func-

tion. For the application of the two theorems, reader is referred to Example 1 in

16

Section 2.3.3.

2.3.2 Assembly method

The indicator function of a design can be built from the indicator functions of

its LOO projections as explained and illustrated below. Suppose that A is a

three-factor fractional factorial design and its indicator function is

FA = bφ + b1C1 + b2C2 + b3C3 + b12C12 + b13C13 + b23C23 + b123C123.

Its three LOO indicator functions are

FA(−1)
= 2bφ + 2b2C2 + 2b3C3 + 2b23C23,

FA(−2)
= 2bφ + 2b1C1 + 2b3C3 + 2b13C13,

and

FA(−3)
= 2bφ + 2b1C1 + 2b2C2 + 2b12C12.

In any two LOO indicator functions, the coefficients with the same suffix must

be identical. Suppose that we only know the indicator functions of the three

LOO projections. To rebuild FA by using FA(−1)
, FA(−2)

and FA(−3)
, we can first

divide coefficients of each LOO indicator function by two and then assign them

to the corresponding coefficients in FA. The reason of dividing by two is that

the coefficients in FA(−j) are twice of their corresponding coefficients in FA. The

relationship between FA and its LOO indicator functions is given in Table 2.1.

The coefficients in each indicator function are listed in each row and the column

shows the relationship of the coefficients between indicator functions. Since none

of the LOO indicator functions contains the term b123C123, this assembly method

only allows us to construct an incomplete indicator function. By applying The-

orem 2 on the incomplete indicator function, we soon obtain suitable values for

b123 and successfully rebuild an FA. This method can be used for the designs with

17

Table 2.1: The relationship between FA and its LOO indicator functions.

design Cφ C1 C2 C3 C12 C13 C23 C123

FA bφ b1 b2 b3 b12 b13 b23 b123

1
2
FA(−3)

bφ b1 b2 b12

1
2
FA(−2)

bφ b1 b3 b13

1
2
FA(−1)

bφ b2 b3 b23

more factors. For those indicator functions with identical incomplete indicator

function, they would have the same LOO indicator functions. Therefore, it is

possible that we may obtain more than one indicator function from a group of

LOO indicator functions.

In general, we only have k (k−1)-factor indicator functions and do not know

whether they are LOO projections of a k-factor indicator function. The assem-

bly method can be applied to check whether their combination can construct a

k-factor indicator function. The procedure is given as follows. Suppose that FD

is a k-factor indicator function in F∗(n, k, 2, d) and its coefficients are unknown.

We can first select one of the (k−1)-factor indicator functions in F∗(n, k−1, 2, d)

and assign it to FD(−1)
, i.e., replace the factor labels 1, 2, · · · , k − 1 in the chosen

indicator function by 2, · · · , k respectively, divide its coefficients by two, and set

them to the corresponding coefficients in FD. Next, select one of the (k − 1)-

factor indicator functions in F∗(n, k− 1, 2, d) and assign it to FD(−2)
, i.e., replace

its factor labels 1, 2, · · · , k− 1 by 1, 3, · · · , k respectively. The indicator function

for FD(−2)
could be the one we have selected for FD(−1)

, i.e., repeated selection is

allowed. Because the coefficients in FD with suffixes not including 1 have already

been determined by FD(−1)
, the assignment of FD(−2)

must obey the predetermined

condition of the coefficients. The procedure can be repeated sequentially to as-

sign the other LOO indicator functions until FD(−k) . Finally, a polynomial with

18

unknown bT is assembled from k (k−1)-factor indicator functions. We can check

whether the polynomial is an incomplete indicator function by using Theorem 1,

and determine the value of bT from Theorem 2 if the polynomial passes the ex-

amination of Theorem 1.

2.3.3 An example

Here we give a simple but clear example to demonstrate the assembly method.

Example 1. Suppose that we have chosen three two-factor indicator functions

from F∗(6, 3, 2, 0),

FA1 =
3

2
+

1

2
C1 −

1

2
C2 −

1

2
C12,

FA2 =
3

2
− 1

2
C1 −

1

2
C2 −

1

2
C12,

and

FA3 =
3

2
− 1

2
C1 +

1

2
C2 +

1

2
C12.

Our purpose is to use them to generate a three-factor indicator function, say

FA = bφ + b1C1 + b2C2 + b3C3 + b12C12 + b13C13 + b23C23 + b123C123.

We can first assign FA1 to FA(−1)
by replacing factors label 1 and 2 in FA1 to 2

and 3, respectively. This assignment can be denoted by

FA1 ⇒ FA(−1)
=

3

2
+

1

2
C2 −

1

2
C3 −

1

2
C23.

After dividing FA(−1)
by two, setting its coefficients to the corresponding terms

in FA, we obtain

FA =
3

4
+ b1C1 +

1

4
C2 −

1

4
C3 + b12C12 + b13C13 −

1

4
C23 + b123C123.

For FA(−2)
, the predetermined coefficients by the assignment of FA(−1)

are bφ(= 3
4
)

and b3(= −1
4
) (see Table 2.1). Therefore, the two indicator functions, FA1 and

19

FA2 , are eligible for the assignment of FA(−2)
. We denote FA1 ⇒ FA(−2)

as case 1

and FA2 ⇒ FA(−2)
as case 2; their corresponding FA’s are:

case 1: 1
2
FA1 ⇒ 1

2
FA(−2)

= 3
4

+ 1
4
C1−1

4
C3 − 1

4
C13

FA =
3

2
+

1

4
C1 +

1

4
C2 −

1

4
C3 + b12C12 −

1

4
C13 −

1

4
C23 + b123C123.

case 2: 1
2
FA2 ⇒ 1

2
FA(−2)

= 3
4
− 1

4
C1−1

4
C3 − 1

4
C13

FA =
3

2
− 1

4
C1 +

1

4
C2 −

1

4
C3 + b12C12 −

1

4
C13 −

1

4
C23 + b123C123.

Now, let us consider the last assignment for both cases. In case 1, the predeter-

mined coefficients for FA(−3)
are

bφ(=
3

4
), b1(=

1

4
), and b2(=

1

4
). (2.8)

Because none of the coefficients in the FA1 , FA2 , and FA3 can satisfy the condition

in (2.8), this assembly fails. In case 2, the predetermined coefficients are bφ(= 3
4
)

,b1(= −1
4
), and b2(= 1

4
). The coefficients in FA3 are eligible for the assignment of

FA(−3)
. Finally, we obtain

FA =
3

4
− 1

4
C1 +

1

4
C2 −

1

4
C3 +

1

4
C12 −

1

4
C13 −

1

4
C23 + b123C123.

By letting b123 = 0, we obtain a polynomial F ′A. The Table 2.2, which checks the

conditions in Theorem 1, confirms that F ′A is an incomplete indicator function.

By Theorem 2, we soon obtain b123 = −1/4. Through the procedure, one three-

factor indicator function is successfully generated from three two-factor indicator

functions. Actually, this three-factor indicator function is corresponding to the

design matrix

1 1 −1

1 1 −1

−1 1 −1

−1 1 1

−1 −1 1

−1 −1 −1

.

20

Table 2.2: Incomplete indicator function examination

x1 x2 x3 C123 F ′A(x) Condition examination

1 1 1 1 1/4 (a). d(F ′A(x))=3/4

-1 1 1 -1 3/4 (b). y = minx∈G s.t. C123(x)=1 F
′
A(x) = 1/4

1 -1 1 -1 -1/4 z = minx∈G s.t. C123(x)=−1 F
′
A(x) = −1/4

-1 -1 1 1 5/4 y ≥ (−z)

1 1 -1 -1 7/4

-1 1 -1 1 5/4

1 -1 -1 1 1/4

-1 -1 -1 -1 3/4

2.3.4 Hierarchical structure

There exists a hierarchical structure between F∗(n, k − 1, 2, d) and F∗(n, k, 2,

d), for k = d + 1, d + 2, · · · . This hierarchical structure makes it possible to

sequentially generate all indicator functions. Recall that indicator functions of

OA(n, k, 2, d)’s have the property that bφ = n/2k and bt = 0 for all nonempty t

with ‖t‖ ≤ d. Hence, F∗(n, d, 2, d) contains only one indicator function F (x) =

n/2d. By applying the assembly method, we can generate F∗(n, d + 1, 2, d) as

shown below. Let F (x) be an indicator function in F∗(n, d+ 1, 2, d). Then, F (x)

must be of the form:

F (x) =
n

2d+1
+ bT CT , (2.9)

where T = {1, 2, · · · , d + 1}. By Theorem 2, bT can be any of the values

− n
2d+1 ,− n

2d+1 +1, · · · , n
2d+1 . Because there are (n/2d+1) bT ’s and F (x) = n/2d+1 +

bT CT and F (x) = n/2d+1− bT CT are isomorphic, we can conclude that there ex-

ist dn/2d+1 + 1/2e non-isomorphic designs in F∗(n, d + 1, 2, d). The procedure

can be repeated to sequentially generate F∗(n, d+ 2, 2, d) from F∗(n, d+ 1, 2, d),

F∗(n, d+3, 2, d) from F∗(n, d+2, 2, d), and so on. The relationship between an FD

in F∗(n, d+2, 2, d) and its LOO indicator functions is shown in Table 2.3. Notice

21

Table 2.3: The relationship between FD and its LOO indicator functions where

FD is in F∗(n, k = d+ 2, 2, d).

design Cφ C12···(k−1) C12···(k−2)k · · · C2···k C12···k

FD bφ b12···(k−1) b12···(k−2)k · · · b2···k b12···k

1
2
FD(−k) bφ b12···(k−1)

1
2
FD(−(k−1))

bφ b12···(k−2)k

...
...

...

1
2
FD(−1)

bφ b2···k

*bt’s for 1 ≤ ‖t‖ ≤ d are omitted because they are equal to zero.

that none of the non-zero coefficients in these LOO indicator functions has the

same suffix except bφ. This makes the assembly method easier to be implemented

because the later assigned LOO indicator functions do not have any restriction

on their coefficients imposed by the LOO indicator functions. For d = 2, the

relationship between FD(x) in F∗(n, d+ 3, 2, d) and its LOO indicator functions

is as shown in Table 2.4. When k ≥ d + 3, these LOO indicator functions have

overlapped coefficients with each other.

Some issues should be highlighted here. Although all indicator functions in

F∗(n, k, 2, d) can be generated from F∗(n, k−1, 2, d) by the assembly method, not

every indicator functions in F∗(n, k− 1, 2, d) can be obtained by projecting indi-

cator functions in F∗(n, k, 2, d). For instance, F1(x) = 3/4−1/2C123−1/2C124−

1/2C134 − 1/2C234 + 1/2C1234 is the unique isomorphic design in F∗(12, 4, 2, 2),

but F2(x) = 3/2 + 3/2C123, which is an indicator function in F∗(12, 3, 2, 2), can-

not be obtained from F1(x) through projection.

The method in Stufken and Tang (2007) can be regarded as a special case of

our assembly method. Their method first obtains all possible bt’s for ‖t‖ = d+ 1

22

Table 2.4: The relationship between FD and its LOO indicator functions where

FD is in F∗(n, k = d+ 3, 2, d).

design Cφ C123 C124 C134 C234 C125 C135 C235 C145 C245 C345

FD bφ b123 b124 b134 b234 b125 b135 b235 b145 b245 b345

1
2
FD(−5)

bφ b123 b124 b134 b234

1
2
FD(−4)

bφ b123 b125 b135 b235

1
2
FD(−3)

bφ b124 b125 b145 b245

1
2
FD(−2)

bφ b134 b135 b145 b345

1
2
FD(−1)

bφ b234 b235 b245 b345

design C1234 C1235 C1245 C1345 C2345 C12335

FD b1234 b1235 b1245 b1345 b2345 b12345

1
2
FD(−5)

b1234

1
2
FD(−4)

b1235

1
2
FD(−3)

b1245

1
2
FD(−2)

b1345

1
2
FD(−1)

b2345

23

and ‖t‖ = d+ 2. This step is equivalent to using Theorem 2 to obtain the bT for

the indicator functions in F∗(n, d + 1, 2, d) and F∗(n, d + 2, 2, d). Their method

then checks whether the combination of bt’s satisfies some constraints. This step

is equivalent to constructing F∗(n, d + 2, 2, d) from F∗(n, d + 1, 2, d) by the as-

sembly method and checking the conditions in Theorem 1.

2.4 Isomorphism examination

Since isomorphic designs share the same statistical properties, we only need one

of them to represent a class of isomorphic designs. By reducing a class of isomor-

phic designs to one design, we can save a lot of calculation in design enumeration.

In this section, we present two methods for examining isomorphism and reducing

the number of designs in F∗(n, k, 2, d).

2.4.1 Method based on group structure

Let F(n, k, 2, d) be a subsect of F∗(n, k, 2, d) such that every class of isomor-

phic designs in F∗(n, k, 2, d) only has one representative indicator function in

F(n, k, 2, d). To reduce F∗(n, k, 2, d) to F(n, k, 2, d) for the case k = d + 2,

Stufken and Tang (2007) developed some constraints on the coefficients of indica-

tor functions as introduced in Section 2.2.2. We will show that these constraints

still hold for k > d + 2. Although for k > d + 2, these constraints no longer

have the ability to fully reduce F∗(n, k, 2, d) to F(n, k, 2, d), it is still an efficient

method to use the constraints to discard some isomorphic indicator functions in

F∗(n, k, 2, d).

Let δ = (δ1, · · · , δk) where δj = ±1 be a vector acting on D = (d1, · · · ,dk).

The δ is used to indicate whether the signs of the columns of D are switched.

24

When δj = −1, the sign of column j is switched, and not switched if δj = 1. Let

D′ be the design matrix obtained by applying δ on D, i.e., D′ = (δ1d1, · · · , δkdk).

The coefficients of the indicator function of D′ are b′t = δtbt for t ⊆ T , where

δt =
∏

j∈t δj. Let us now pay attention on the δt’s with ‖t‖ ≥ k − 1. Recall that

there exist k t’s with ‖t‖ = k− 1 and only one t with ‖t‖ = k. We again denote

the t’s with ‖t‖ ≥ k − 1 by t1, t2 · · · , tk, tk+1, where tp = T \ {k + 1 − p} for

p = 1, · · · , k and tk+1 = T . For a sign switch indicator δ, the δt’s with ‖t‖ ≥ k−1

is denoted by δ∗ = (δt1 , · · · , δtk , δtk+1
). Since there are 2k different δ’s, we have 2k

different δ∗’s. If we regard each δ∗ as a run, then the 2k different δ∗’s form a half

fractional factorial design, denoted by ∆∗. We regard the jth column of ∆∗ as a

factor and label the factor by j. Notice that when k is odd, ∆∗ is a half fractional

factorial design with the defining relation I = 12 · · · k and when k is even, ∆∗

is a half fractional factorial design with the defining relation I = 12 · · · k(k + 1).

When k is odd, let ∆′ be a design obtained from ∆∗ by deleting any of the first k

columns. Then ∆′ forms a full factorial design, i.e., its runs contain all possible

level combinations. Let FD(x) be the indicator function of D. Denote the coef-

ficients with ‖t‖ ≥ k − 1 in FD(x) by bt1 , bt2 , · · · , btk , btk+1
. Suppose that |btp′ |

is the smallest absolute coefficient among all |btp|’s, where 1 ≤ p ≤ k. Because

∆′ contains all level combinations, we can always find a run δ′0 in ∆′ such that

b′tp = δtpbtp ≤ 0 for p 6= p′. Because there exists a one-to-one correspondence

between the column permutation of D and the order of {t1, t2, · · · , tk}, we can

always find a column permutation to b′tp ’s in an ascending order. This result is

summarized in the following proposition.

Proposition 1. When k is odd, every class of isomorphic designs contains a

design whose indicator function satisfies

bt1 ≤ · · · ≤ btk−1
≤ −|btk |, btk+1

≤ 0. (2.10)

According to Proposition 1, we only need to preserve the designs whose indi-

25

cator functions satisfy (2.10) and discard the others. Proposition 1 ensures that

we will preserve at least one design for each class of isomorphic designs. The

similar result for even k is given below.

When k is even, ∆∗ satisfies I = 12 · · · k(k + 1). Deleting any column of ∆∗

gives us a full factorial design. By a similar argument as for odd k, we obtain the

following proposition.

Proposition 2. When k is even, every class of isomorphic designs contains a

design whose indicator function satisfies either

bt1 ≤ · · · ≤ btk−1
≤ −|btk+1

| (2.11)

or

bt1 ≤ · · · ≤ btk−1
≤ −|btk |, btk+1

< −|btk |. (2.12)

2.4.2 Projective index set

We can assign an index to each non-isomorphic designs in F(n, k − 1, 2, d). We

refer to the index as isomorphism index. An OA(n, k, 2, d) has k LOO projections

and each LOO projection has its own isomorphism index. The collection of the

isomorphism indices of the k LOO projections can be used to examine isomor-

phism. The collection is referred to as projective index set.

Theorem 3. If D and D′ are two isomorphic designs, then their projective index

sets must be identical.

26

Proof. Let D = (d1,d2, · · · ,dk) be an OA(n, k, 2, d). Let R be an n× n matrix

with elements 0 or 1, where 1 appears exactly one time in each row and each

column of R. Any row permutation of D is corresponding to an R and can be

denoted by RD. Let Ψ : {1, 2, · · · , k} → {1, 2, · · · , k} be a function representing

column permutation. Let S = (δij) be a k × k diagonal matrix where δjj = −1

when the sign of column j is switched, and δjj = 1 otherwise. If D and D′ are

isomorphic, there must exist an R, an S and a Ψ such that

D′ = R[dΨ(1),dΨ(2), · · · ,dΨ(k)]S.

Let S(−j) be a (k − 1)× (k − 1) matrix obtained by deleting the jth column and

the jth row of S. Then the LOO projections of D and D′ have the relation

D′(−j) = RD(−Ψ(j))S(−Ψ(j)), j = 1, 2, · · · , k. (2.13)

When D and D′ are isomorphic, for each LOO projection of D, there must exist

a corresponding isomorphic LOO projection of D′.

Note that the converse of Theorem 3 is not true in general. For instance,

FD(x) = 5/2 − 1/2C123 − 1/2C124 − 1/2C134 − 1/2C234 + 1/2C1234 and FD(x) =

5/2−1/2C123−1/2C124−1/2C134−1/2C234−1/2C1234 have the identical projec-

tive index set, but D and D′ are non-isomorphic. By Theorem 3, we know that

any two designs with different projective index sets must be non-isomorphic. This

property is useful to divide F∗(n, k, 2, d) into several groups of non-isomorphic

designs. Moreover, if two k-factor designs have the same projective index set but

different |bT |, they must be non-isomorphic. We will use the projective index set

and |bT | for isomorphism examination as presented in the next section.

27

2.5 Algorithm and results

Based on the materials in Sections 2.3 and 2.4, we develop an algorithm to enu-

merate non-isomorphic designs. The hierarchical structure in our method allows

us to first generate F∗(n, k, 2, d) for k = d + 1 and then sequentially gener-

ate F∗(n, k, 2, d) for higher k by the assembly method. During the generation

process, we use the method given in Section 2.4.1 to discard some isomorphic de-

signs. The projective index set and |bT | are then applied to divide the generated

indicator functions into several non-isomorphic groups. Within each group, an

exhaustive examination based on the definition of isomorphism, i.e., all column

and row permutations and sign switches, is required. Recall that the examination

conditions given in Section 2.4.1 are different for odd and even k’s. Here we just

give the case for odd k. The case for even k is similar.

2.5.1 Algorithm

Suppose that F∗(n, k − 1, 2, d) is known. Let FD be any indicator function in

F∗(n, k, 2, d) and its LOO indicator functions be FD(−1)
, · · · , FD(−k) . Let bT(−j)

denote the highest order coefficient in FD(−j) .

Step 1. Assign an indicator function in F∗(n, k− 1, 2, d) to FD(−k) . The highest

order coefficient of this indicator function should be non-positive by Propo-

sition 1 and it results in bT(−k) ≤ 0. After dividing the coefficients of FD(−k)

by two, assign them to the corresponding coefficients in FD, and record the

isomorphism index of FD(−k) .

Step 2. Sequentially assign the indicator function in F∗(n, k − 1, 2, d) to FD(−j)

for j = k − 1, k − 2, · · · 2. Each assignment must satisfy:

1. the coefficients with the same suffixes among FD(−k) , FD(−(k−1))
, · · · , FD(−j)

are consistent;

28

2. bT(−k) ≤ bT(−(k−1))
≤ · · · ≤ bT(−j) ≤ 0.

After dividing the coefficients by two, assign them to the corresponding

coefficients in FD, and record the isomorphism index of each assignment

simultaneously.

Step 3. Assign an indicator function in F∗(n, k− 1, 2, d) to FD(−1)
. This assign-

ment must satisfy:

1. the coefficients with the same suffixes among FD(−k) , FD(−(k−1))
, · · · , FD(−1)

are consistent;

2. −|bT(−1)
| ≥ bT(−2)

.

After dividing coefficients by two, assign them to the corresponding coeffi-

cients in FD, and record the isomorphism index of FD(−1)
.

Step 4. An assembly polynomial is obtained if Steps 1 to 3 are successfully

performed. Examine whether the polynomial is an incomplete indicator

function by Theorem 1. If it passes Theorem 1, obtain the values of bT by

Theorem 2. By Proposition 1, we can only keep FD with bT ≤ 0. If the

assembly polynomial does not pass Theorem 1, discard it and go back to

Step 1.

Step 5. Repeat Step 1 to Step 4 for all possible assignments to obtain a set

of indicator functions. Each indicator function in the set has a projective

index set. Group together the indicator functions with the same projective

index set and |bT |. For the indicator functions in the same group, check

isomorphism by the definition.

29

2.5.2 Some results

Using the algorithm given in Section 2.5.1, we completely enumerate non-isomorphic

designs for some cases. The numbers of non-isomorphic OA(n, k, s, d) for differ-

ent n, k and d are given in Table 2.5. In these tables, on the right of the colon is

the number of the non-isomorphic OA(n, k, s, d). The percentage in the bracket

denotes the isomorphism examination efficiency according to projective index set

and |bT |. The efficiency is defined by

efficiency =
the number of distinguishable non-isomorphism OA(n, k, s, d)

the number of non-isomorphism OA(n, k, s, d)
.

For the cases of OA(n, 4, 2, 2), OA(n, 5, 2, 3), and OA(n, 6, 2, 4), i.e., k = d + 2,

our results are consistent with those in Stufken and Tang (2007). For the cases

of k > d + 2, which are not included in Stufken and Tang (2007), our results

show that there exist more and more non-isomorphic OA(n, k, 2, d)’s when k− d

is larger.

Table 2.5: The numbers of non-isomorphic OA(n, k, s, d)

OA(n, k, s, d) : # (efficiency) OA(n, k, s, d) : # (efficiency)

OA(4, 3, 2, 2) : 1 (100.0 %) OA(12, 5, 2, 2) : 2 (100.0 %)

OA(8, 3, 2, 2) : 2 (100.0 %) OA(16, 5, 2, 2) : 11 (100.0 %)

OA(12, 3, 2, 2) : 2 (100.0 %) OA(20, 5, 2, 2) : 11 (90.9 %)

OA(16, 3, 2, 2) : 3 (100.0 %) OA(24, 5, 2, 2) : 63 (92.1 %)

OA(20, 3, 2, 2) : 3 (100.0 %) OA(28, 5, 2, 2) : 127 (69.3 %)

OA(24, 3, 2, 2) : 4 (100.0 %) OA(32, 5, 2, 2) : 491 (75.6 %)

OA(28, 3, 2, 2) : 4 (100.0 %) OA(36, 5, 2, 2) : 1242 (58.7 %)

OA(32, 3, 2, 2) : 5 (100.0 %) OA(40, 5, 2, 2) : 3919 (58.4 %)

OA(36, 3, 2, 2) : 5 (100.0 %) OA(16, 5, 2, 2) : 27 (100.0 %)

Continued. . .

30

OA(n, k, s, d) : # (efficiency) OA(n, k, s, d) : # (efficiency)

OA(40, 3, 2, 2) : 6 (100.0 %) OA(20, 5, 2, 2) : 75 (93.3 %)

OA(8, 4, 2, 2) : 2 (100.0 %) OA(24, 5, 2, 2) : 1350 (97.7 %)

OA(12, 4, 2, 2) : 1 (100.0 %) OA(8, 4, 2, 3) : 1 (100.0 %)

OA(16, 4, 2, 2) : 5 (100.0 %) OA(16, 4, 2, 3) : 2 (100.0 %)

OA(20, 4, 2, 2) : 3 (100.0 %) OA(24, 4, 2, 3) : 2 (100.0 %)

OA(24, 4, 2, 2) : 10 (100.0 %) OA(32, 4, 2, 3) : 3 (100.0 %)

OA(28, 4, 2, 2) : 7 (100.0 %) OA(40, 4, 2, 3) : 3 (100.0 %)

OA(32, 4, 2, 2) : 19 (100.0 %) OA(48, 4, 2, 3) : 4 (100.0 %)

OA(36, 4, 2, 2) : 15 (100.0 %) OA(56, 4, 2, 3) : 4 (100.0 %)

OA(40, 4, 2, 2) : 32 (96.9 %) OA(64, 4, 2, 3) : 5 (100.0 %)

OA(8, 5, 2, 2) : 1 (100.0 %) OA(72, 4, 2, 3) : 5 (100.0 %)

OA(80, 4, 2, 3) : 6 (100.0 %) OA(32, 5, 2, 4) : 2 (100.0 %)

OA(16, 5, 2, 3) : 2 (100.0 %) OA(48, 5, 2, 4) : 2 (100.0 %)

OA(24, 5, 2, 3) : 1 (100.0 %) OA(64, 5, 2, 4) : 3 (100.0 %)

OA(32, 5, 2, 3) : 5 (100.0 %) OA(80, 5, 2, 4) : 3 (100.0 %)

OA(40, 5, 2, 3) : 3 (100.0 %) OA(96, 5, 2, 4) : 4 (100.0 %)

OA(48, 5, 2, 3) : 10 (100.0 %) OA(112, 5, 2, 4) : 4 (100.0 %)

OA(56, 5, 2, 3) : 7 (100.0 %) OA(128, 5, 2, 4) : 5 (100.0 %)

OA(64, 5, 2, 3) : 19 (100.0 %) OA(144, 5, 2, 4) : 5 (100.0 %)

OA(72, 5, 2, 3) : 15 (100.0 %) OA(160, 5, 2, 4) : 6 (100.0 %)

OA(80, 5, 2, 3) : 33 (97.0 %) OA(32, 6, 2, 4) : 2 (100.0 %)

OA(16, 6, 2, 3) : 1 (100.0 %) OA(64, 6, 2, 4) : 5 (100.0 %)

OA(24, 6, 2, 3) : 2 (100.0 %) OA(80, 6, 2, 4) : 1 (100.0 %)

OA(32, 6, 2, 3) : 10 (100.0 %) OA(96, 6, 2, 4) : 9 (100.0 %)

OA(40, 6, 2, 3) : 9 (88.9 %) OA(112, 6, 2, 4) : 3 (100.0 %)

OA(48, 6, 2, 3) : 45 (88.9 %) OA(128, 6, 2, 4) : 17 (100.0 %)

Continued. . .

31

OA(n, k, s, d) : # (efficiency) OA(n, k, s, d) : # (efficiency)

OA(64, 6, 2, 3) : 358 (74.3 %) OA(64, 7, 2, 4) : 7 (100.0 %)

OA(24, 6, 2, 3) : 1 (100.0 %) OA(96, 7, 2, 4) : 4 (100.0 %)

OA(32, 6, 2, 3) : 17 (100.0 %) OA(128, 7, 2, 4) : 123 (94.3 %)

OA(16, 5, 2, 4) : 1 (100.0 %) OA(144, 7, 2, 4) : 35 (28.6 %)

We can find in Table 2.5 that for the cases of k = d+ 1, the numbers of non-

isomorphic designs are consistent with our discussion about OA(n, d + 1, 2, d)

given in Section 2.3.4. From equation (2.9), the number of non-isomorphic

OA(n, d+ 1, 2, d) is dn/2d+1 + 1/2e. A more detailed list of these non-isomorphic

designs is given in Table 2.6, together with the optimal designs based on mini-

mum aberration criterion. The minimum aberration criterion and the resolution

shown in the table were defined in Deng and Tang (1999). For the cases of

k ≥ d + 2, the indicator functions of non-isomorphic designs do not follow a

systematic structure as in the case of k = d + 1. We therefore only present the

numbers of non-isomorphic designs and the minimum aberration designs for the

case OA(n, 5, 2, 2) in Table 2.7 and the case OA(n, 6, 2, 3) in Table 2.8, respec-

tively. In Table 2.5, the 100% efficiency shows that the projective index set and

|bT | can completely distinguish OA(n, k, 2, d) when k = d+ 1. We also find that

when n and k are lager, the isomorphism examination by the projective index

set and |bT | becomes less efficient. The efficiency for OA(36, 5, 2, 2) is 58.7%,

and for OA(114, 7, 2, 4) is only 28%. In next chapter, we will propose a more

efficient method which has better power to classify designs into non-isomorphic

groups. More accurate the non-isomorphism classification is, less time the proce-

dure would spend on the definition-based isomorphism examination within each

group, which is extremely time consuming.

32

Table 2.6: The classes of non-isomorphic OA(n, k = d+1, 2, d) and the minimum

aberration design in each class

minimum aberration designs

n non-isomorphic designs Resolution F (x)

1× 2d 0.5 + bT CT , bT = 0.5 3 0.5 + 0.5CT

2× 2d 1 + bT CT , bT ∈ {0, 1} 4 1

3× 2d 1.5 + bT CT , bT ∈ {0.5, 1.5} 3.67 1.5 + 0.5CT

4× 2d 2 + bT CT , bT ∈ {0, 1, 2} 4 2

5× 2d 2.5 + bT CT , bT ∈ {0.5, 1.5, 2.5} 3.8 2.5 + 0.5CT

6× 2d 3 + bT CT , bT ∈ {0, 1, 2, 3} 4 3

7× 2d 3.5 + bT CT , bT ∈ {0.5, 1.5, 2.5, 3.5} 3.86 3.5 + 0.5CT

8× 2d 4 + bT CT , bT ∈ {0, 1, 2, 3, 4} 4 4

9× 2d 4.5 + bT CT , bT ∈ {0.5, 1.5, 2.5, 3.5, 4.5} 3.88 4.5 + 0.5CT

10× 2d 5 + bT CT , bT ∈ {0, 1, 2, 3, 4, 5} 4 5

33

Table 2.7: The classes of non-isomorphic OA(n, k = d + 3, 2, d = 2) and the

minimum aberration design in each class

of non- minimum aberration designs

n isomorphic designs Resolution F (x)

12 2 3.67 0.375, −0.125, −0.125, 0.125, −0.125,

0.125, 0.125, 0.125, −0.125, −0.125,

0.125, −0.125, −0.125, −0.125, −0.125,

0.125, 0.

16 11 5 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, −0.5.

20 11 3.8 0.625, −0.125, 0.125, 0.125, −0.125,

0.125, −0.125, 0.125, −0.125, −0.125,

0.125, −0.125, −0.125, −0.125, −0.125,

−0.125, 0.

24 63 4.67 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −0.25,

−0.25, −0.25, −0.25, 0.25, 0.

28 127 3.86 0.875, −0.125, 0.125, −0.125, −0.125,

0.125, −0.125, −0.125, 0.125, −0.125,

−0.125, −0.125, −0.125, −0.125,

−0.125, 0.125, 0.

32 491 5 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0.

36 1242 3.89 1.125, −0.125, − 0.125, 0.125, 0.125,

−0.125, −0.125, −0.125, −0.125,

−0.125, 0.125, −0.125, −0.125,

−0.125, −0.125, −0.125, 0.

40 3919 4.8 1.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −0.25,

−0.25, −0.25, −0.25, −0.25, 0.

*The numbers in the column of F (x) are bφ, b123, b124, b134, b234, b125, b135, b235,

b145, b245, b345, b1234, b1235, b1245, b1345, b2345, b12345.34

Table 2.8: The classes of non-isomorphic OA(n, k = d + 3, 2, d = 3) and the

minimum aberration design in each class

of non- minimum aberration designs

n isomorphic

designs

resolution F (x)

16 1 4 0.25, 0, 0, −0.25, 0, 0, 0, 0, −0.25, 0, 0,

0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

24 2 4.67 0.375, −0.125, −0.125, −0.125, 0.125,

−0.125, −0.125, 0.125, −0.125, −0.125,

0.125, 0.125, 0.125, 0.125, −0.125,

−0.125, 0, 0, 0, 0, 0, 0, 0.

32 10 6 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, −0.5.

40 9 4.8 0.625, 0.125, 0.125, 0.125, −0.125,

0.125, −0.125, 0.125, −0.125, −0.125,

−0.125, −0.125, 0.125, 0.125, 0.125,

0.125, 0, 0, 0, 0, 0, 0, 0.

48 45 4.67 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0.25, −0.25, −0.25, −0.25, −0.25, 0,

0, 0.

*The numbers in the column of F (x) are bφ, b1234, b1235, b1245, b1345, b2345, b1236,

b1246, b1346, b2346, b1256, b1356, b2356, b1456, b2456, b3456, b12345, b12346, b12356, b12456,

b13456, b23456, b123456.

35

Chapter 3

Isomorphism examination based

on counting vector

3.1 Introduction

There exist some methods in the literature to reduce the computation in isomor-

phism examination. They transfer designs into some examination measures that

are easy to calculate and initially separate the designs into several groups ac-

cording to the values of the examination measure. The initial separation ensures

that designs in different groups are non-isomorphic. It then takes much less time

to examine the isomorphism within each group. Because these methods cannot

guarantee that designs within the same group are isomorphic, we call them ini-

tial screening methods for isomorphism examination. Draper and Mitchell (1968)

proposed a method for isomorphism examination of regular designs by compar-

ing their word length patterns (WLP s), which record the numbers of letters of

the words in their defining contrast subgroups. However, it can be shown by

counterexamples that word length pattern is not sufficient to fully distinguish

non-isomorphic designs. For example, there exit two 212−3 fractional factorial de-

signs which are non-isomorphic but have identical word length pattern. Draper

and Mitchell (1970) proposed letter pattern comparison for isomorphism exam-

36

ination. Letter pattern records the times of each letter appearing in different

lengths of words. They conjectured that non-isomorphic designs should have

different letter patterns. Nevertheless, Chen and Lin (1991) showed that the

conjecture is not true by giving two non-isomorphic 231−16 regular designs with

identical letter pattern. These works only focus on regular designs. Recently,

J-characteristics was introduced in Deng and Tang (1999) and Tang and Deng

(1999) but explicitly defied in Tang (2001). Through J-characteristics, they de-

fined general word length pattern, denoted by GWLP , and confounding frequency

vector, denoted by CFV . Both of them extend the concept of WLP from regular

to non-regular designs. The GWLP and CFV were treated as initial screening

methods for isomorphism examination in Katsaounis and Dean (2008). Based on

Hamming distance, which records the number of differences between two rows in

a design, Clark and Dean (2001) developed the distance matrix, denoted by HD,

and recommended a two-step algorithm for the isomorphism examination. Its

first step proposed an initial screening method, called Deseq1. Ma, Fang and Lin

(2001) combined Hamming distance and the measures of uniformity to develop

squared centered L2 discrepancy, denoted by CD2
2. Based on the coding theory

approach, Xu (2003) defined the power moments, denoted by Ku. Because iso-

morphic designs have the same CD2
2 and Ku, both are also useful examination

measures for initial screening of non-isomorphic designs.

The technique of projection is widely employed in the initial screening meth-

ods of the isomorphism examination. For a k-factor design, there are (kp) ways

to project the design onto p factors. These projected designs are called the p-

dimensional projections. We can apply the examination measures mentioned

above on each of the (kp) projections and calculate their frequency. The fre-

quency is referred to as the p-dimensional projection frequency corresponding to

the specific measure and the measure calculated from the whole design matrix

is referred to as the overall measure. Notice that the measure could be a single

37

quantity, a vector, or a matrix. For instance, the measure for CD2
2 is a single

quantity and for CFV is a vector, and the frequency of p-dimensional projections

obtained from them are called the p-dimensional CD2
2 projection frequency and

the p-dimensional CFV projection frequency, respectively. If designs D and D′

are isomorphic, then for any p-dimensional projection in D, there must exist a

corresponding isomorphic p-dimensional projection in D′. The one-to-one corre-

spondence between the projections of D and D′ ensures that their p-dimensional

projection frequency must be identical. In other words, if there exists some p

where 1 ≤ p ≤ k such that the p-dimensional projection frequencies of D and

D′ are different, then D and D′ must be non-isomorphic. Because two designs

with the same overall measure may have different p-dimensional projection fre-

quency but the designs with the same projection frequency always have the same

overall measure, the p-dimensional projection frequency presents more detailed

information than the overall measure. Therefore, the initial screening method

with projection is more efficient than the method without projection. Ma, Fang

and Lin (2001) and Xu (2005) applied the technique of projection to CD2
2 and

Ku, respectively. We denote their projection frequencies (the collections of p-

dimensional projection frequencies for p = 1, · · · , k) by PCD2
2

and PKu . In this

chapter, we also apply the technique of projection to CFV and GWLP , and call

their projection frequencies PCFV and PGWLP , respectively. The application of

projection for HD was adopted in the algorithm of Deseq1 in Clark and Dean

(2001).

In addition to these initial screening methods, there are the complete clas-

sification methods in the literature. A complete classification method for non-

isomorphic designs was developed by Stufken and Tang (2007). Through search-

ing all the solutions over equations of J-characteristics, the complete set of non-

isomorphic OA(n, d+ 2, 2, d)’s can be obtained. Nevertheless, this method is re-

stricted to the case of k = d+2 only. Based on Hamming distance and projection,

38

Clark and Dean (2001) derived a theorem which offered a complete classification

method for isomorphism examination. Based on the indicator function, Cheng

and Ye (2004) also provided a complete classification method. Katsaounis and

Dean (2008) applied the method based on the indicator function to perform the

isomorphism examination and found that this method was much slower than that

based on the Hamming distance. Katsaounis and Dean (2008) provides a survey

and evaluation for these methods of isomorphism examination.

The purpose of this chapter is to propose an efficient initial screening method

for isomorphism examination based on counting vector, which will be introduced

latter. We find that the operations of sign switch, column and row permuta-

tions on the design matrix are related to the rearrangement of components of

the counting vector. Some sufficient and necessary conditions for two counting

vectors to be isomorphic are therefore developed. The conditions offer us a the-

oretical basis to present an isomorphism examination measure, called the split-N

matrix. The split-N matrix is invariant to the sign switch, column and row per-

mutations so that it can be a measure for the isomorphism examination. We also

find that some existing measures for isomorphism examination can be expressed

as a function of the split-N matrix. In other words, non-isomorphic designs that

can be distinguished by these measures can be classified by the split-N matrix,

but not the other way around. That is, split-N matrix has higher classification

efficiency than these measures. The technique of projection is also applied in

the examination method based on the split-N matrix, which greatly improves the

examination efficiency. Some simplified methods are proposed for the cases of

design with large k. They may have lower efficiency than the split-N matrix but

can greatly reduce the computation time and the storage memory when k is large.

In Section 3.2, we discuss the transformation of the counting vectors between

the isomorphic designs and provide necessary and sufficient conditions for them.

39

In Section 3.3, we define the split-N vectors and use them to construct the split-N

matrix. In Section 3.3.2, we prove that the split-N matrix is more efficient for

isomorphic examination than some other existing measures. In Section 3.3.3, we

apply split-N matrix to the projections of the design and also prove that the

method with projection based on split-N matrix is more efficient than that based

on some other measures. Several simplified methods are proposed in Section

3.3.4. Some examples and computational comparisons are given in Section 3.4.

In the remainder of this section, we will first introduce some notation and

terminology and then review some examination measures mentioned above. Let

T = {1, · · · , k}, where k is the number of factors of a design. For any m ⊆ T ,

define a 1× 2k vector

xm = (xm1, · · · , xmk), where

 xmj = −1, if j ∈m,

xmj = +1, otherwise.
(3.1)

Each xm can be regarded as a run in the full factorial design. We rank xm’s in

Yates order for all subsets m of T . The k-factor full factorial design can then be

represented by the 2k × k matrix

X = (xTφ ,x
T
1 ,x

T
2 ,x

T
12,x

T
3 ,x

T
13,x

T
23,x

T
123,x

T
4 ,x

T
14, · · ·)T , (3.2)

where the superscript T denotes vector transpose and the suffices denote subsets.

For instance, x1 represents x{1}, x12 represents x{1,2} and so forth.

Let hj denote the jth column of X, where j = 1, · · · , k. Thus, X can also

be represented by

X = (h1, · · · ,hk). (3.3)

For any t ⊆ T , we use ht to represent the component-wise product of the columns

hj’s, where j ∈ t. That is, ht is a 2k × 1 vector whose m-th component is

hmt =
∏
j∈t

xmj. (3.4)

40

Ranking ht’s in Yates order for all subsets t of T , we obtain the 2k × 2k matrix

H = (hφ,h1,h2,h12,h3,h13,h23,h123,h4,h14, · · ·), (3.5)

which is referred to as the model matrix of the k-factor full factorial design X.

Notice that m is the row index and t is the column index of H.

Now let D = (dij), an n× k matrix, be a k-factor 2-level design with n runs

and levels coded as +1 and −1. Each row of D represents a run and each column

represents a factor. Let Nm denote the number of replicate that a run xm occurs

in design D. Design D can then be equivalently described by the 2k × 1 vector

N = (Nφ, N1, N2, N12, N3, N13, N23, N123, N4, N14, · · ·)T , (3.6)

where Nm is ranked in Yates order. The vector N is the counting vector of design

D mentioned in the previous paragraph. Because it counts the number of the

appearance of the run xm in D, it can be used to represent a design.

For any t ⊆ T , let

Jt =
n∑
i=1

∏
j∈t

dij =
∑
m⊆T

hmtNm, (3.7)

where hmt denotes the m-th row and the t-th column of H. The Jt values for all

subsets t of T is referred to as J-characteristics of design D. The 2k × 1 vector

that ranks J-characteristics in Yates order, i.e.,

J = (Jφ, J1, J2, J12, J3, J13, J23, J123, J4, J14, · · ·)T , (3.8)

is called J-vector. For the details of J-characteristics, readers is referred to

Stufken and Tang (2007). Tang (2001) showed that there exist the following

relationships between counting vector and J-vector:

J = HN, (3.9)

41

N = 2−kHJ. (3.10)

Another tool that is related to the counting vector and J-characteristics is

the indicator function. Indicator function is a polynomial representative of the

equation (3.10). The value of the polynomial is the number of the replicates that

a run occurs in a design and the coefficients of its polynomial terms are equivalent

to the normalized J-characteristics defined in Tang and Deng (1999).

In the following paragraph, we briefly express some examination measures in

terms of the notation mentioned above. Let D be a k-factor 2-level design with

n runs. For t ⊆ T , let ‖t‖ denote the number of components in t. Deng and

Tang(1999) defined the CFV by

CFV (D) = ((l1,1, · · · , l1,n), (l2,1, · · · , l2,n), · · · , (lk,1, · · · , lk,n)), (3.11)

where lij is the number of t’s such that |Jt| = (n+ 1− i) and ‖t‖ = j. Note that

|Jt| is always an integer satisfying 0 ≤ |Jt| ≤ n. Tang and Deng (1999) defined

GWLP of D by

GWLP (D) = (α1(D), · · · , αk(D)), (3.12)

where

αj(D) =
∑
‖t‖=j

(
Jt

n

)2

, j = 1, · · · , k. (3.13)

A connection between GWLP and CD2
2 was given in Ye (2003) as follows:

CD2
2(D) =

(
13

12

)k
− 2

(
35

32

)k
+

(
9

8

){
1 +

k∑
j=1

αj(D)

9j

}
. (3.14)

Xu (2003) showed that Ku is a linear combination of α1(D), · · · , αu(D). For

positive integers u,

Ku(D) = cuαu(D) + cu−1αu−1(D) + · · ·+ c1α1(D) + α0(D)− C0, (3.15)

42

where ci = ci(u;n, k, s) = [n/(n−1)]
∑u

m=0(−1)m+i(um)ku−m[
∑m

j=0 j!S(m, j)s−j(s−

1)j−i(k−ij−i)], C0 = ku/(n− 1) and S(m, j) are Stirling numbers of the second kind.

Based on Hamming distance, Clark and Dean (2001) defined distance matrix HD

as follows. Let ζ[D]ji1,i2 be 1 if, in the jth column of D, the sign in the i1th and

i2th rows are different, and 0 if they are the same. Then,
∑k

j=1 ζ[D]ji1,i2 counts

the number of columns in which the signs of the i1th and i2th rows fail to coin-

cide. The distance matrix HD is defined as a matrix (πi1,i2) where the (i1, i2)th

component equals

πi1,i2 =

∑k

j=1 ζ[D]ji1,i2 , for i1 6= i2,

0, for i1 = i2.
(3.16)

Clark and Dean (2001) pointed out that HD is invariant to the sign switch and

column permutation of D, but not to row permutation.

3.2 Isomorphism of counting vectors

In this section, we discuss how the counting vector is affected by the operation

of the sign switch, column permutation and row permutation. We obtain some

necessary and sufficient conditions for two counting vectors to be isomorphic. Let

D = (dij) be a k-factor n-run design matrix with counting vector N(D) where

i = 1, · · · , n and j = 1, · · · , k. Let H be the model matrix of the k-factor full

factorial design X where X and H are given in the equations (3.3) and (3.5),

respectively. For two matrices U1 and U2 with the same number of rows, let

[U1|U2] denote the l× (m1 +m2) matrix formed by arranging the l×m1 matrix

U1 in the first m1 columns and the l × m2 matrix U2 in the last m2 columns.

Now let us combine X and N(D) to form the 2k × (k + 1) matrix

[X|N(D)]. (3.17)

In each row of the matrix [X|N(D)], the first k components denote a run and the

last component denotes the number of the replicates of the run in D. Because X

43

is the k-factor full factorial design, which contains all possible level combinations

of a k-factor experiment, the [X|N(D)] can be used to fully characterize the de-

sign D. In the following paragraphs, we will discuss how the sign switch, column

and row permutation that are performed on D affect [X|N(D)] and the counting

vector.

Suppose that design D′ is obtained by permutating the rows of the design

D. Because row permutation only changes the order of the runs in D and D′, no

matter how the rows are permutated, the numbers of the replicates of each runs

in D and in D′ are identical, i.e. N(D) = N(D′). In other words, the row permu-

tation has no influence to the counting vector. Therefore, row permutation can

be ignored when we discuss the isomorphism examination from the perspective

of counting vectors.

Let us now focus on the sign switch operation on D. Let T = {1, · · · , k}.

Recall that X = (h1, · · · ,hk) and H = (hφ,h1,h2,h12,h3,h13 · · · ,h1···k). Sup-

pose that D∗ is obtained by switching the sign of factors κ1, · · · , κg of D. Denote

κ = {κ1, · · · , κg} and δt = ‖κ ∩ t‖ for t ⊆ T . Let us characterize design D as

[X|N(D)]. After performing this sign switch operation, the design becomes

[X∗|N(D)], (3.18)

where

X∗ = ((−1)δ1h1, · · · , (−1)δkhk). (3.19)

Because in each row of the matrix in (3.18), the last component records the

number of the replicates of the run after sign switch, (3.18) indicates the design

D∗. If we rearrange the rows of [X∗|N(D)] so that the X∗ part is transformed into

X, we will obtain [X|N(D∗)]. Suppose that we use matrix operation to represent

the row rearrangement transforming X∗ into X. Then, there exists a 2k × 2k

44

matrix R∗ such that

R∗[X∗|N(D)] = [X|N(D∗)], (3.20)

where

R∗X∗ = X, (3.21)

and

R∗N(D) = N(D∗). (3.22)

If we can solve the equation (3.21) to obtain R∗ , then N(D∗) can be obtained

from N(D) by equation (3.22). However, to obtain R∗ directly from equation

(3.21) is difficult because X∗ is not a square matrix so that its inverse matrix

does not exist. Therefore, we turn our attention from the design matrices X and

X∗ to their model matrices H and H∗, respectively. Let λ be a matrix operator

which expands a design matrix to its model matrix. Take λ on both sides of

equation (3.21) to obtain

λ(R∗X∗) = λ(X). (3.23)

Because λ(R∗X∗) = R∗λ(X∗), equation (3.23) can be written as

R∗H∗ = H, (3.24)

where

H∗ = ((−1)δφhφ, (−1)δ1h1, (−1)δ2h2, (−1)δ12h12, · · · , (−1)δ1···kh1···k). (3.25)

The multiplicator (−1)δt in equation (3.25) controls the sign switch of the column

ht. Collect all (−1)δt ’s and rank them in Yates order of t to form the vector

((−1)δφ , (−1)δ1 , (−1)δ2 , (−1)δ12 , · · · , (−1)δ1···k)T . (3.26)

Notice that the vector in (3.26) is the column ht in H with t = κ. Let Sκ be

the 2k × 2k diagonal matrix with diagonal being hκ. Because H∗ = HSκ from

equation (3.25), equation (3.24) can be written as

R∗HSκ = H. (3.27)

45

Because H−1 = 2−kH and (Sκ)−1 = Sκ (Sκ is an orthonormal and symmetric

matrix), we obtain from equation (3.27) that

R∗ = H(HSκ)−1 = H(Sκ)−1H−1 = 2−kHSκH. (3.28)

We call Sκ the sign switch matrix. For a k-factor design, there are 2k different

ways to perform sign switch. Define S as the collection of Sκ’s for all subsets κ

of T .

Let us now consider the column permutation operation onD. Let (j1, j2, · · · , jk)

be a permutation of (1, 2, · · · , k). Suppose that D∗∗ is obtained from D by the

column permutation (j1, j2, · · · , jk). After performing this column permutation

operation, the design becomes

[X∗∗|N(D)], (3.29)

where

X∗∗ = (hj1 ,hj2 , · · · ,hjk). (3.30)

Because in each row of the matrix in (3.29), the last component records the

number of the replicates of the run after column permutation, (3.29) indicates

the design D∗∗. If we rearrange the rows of [X∗∗|N(D)] so that the X∗∗ part

is transformed into X, we will obtain [X|N(D∗∗)]. Suppose that we use matrix

operation to represent the row rearrangement transforming X∗∗ into X. Then,

there exists a 2k × 2k matrix R∗∗ such that

R∗∗[X∗∗|N(D)] = [X|N(D∗∗)], (3.31)

where

R∗∗X∗∗ = X, (3.32)

and

R∗∗N(D) = N(D∗∗). (3.33)

46

Similarly, to obtain R∗∗, let us take λ on both sides of equation (3.32), i.e.,

λ(R∗∗X∗∗) = λ(X). (3.34)

Because λ(R∗∗X∗∗) = R∗∗λ(X∗∗), equation (3.34) can be written as

R∗∗H∗∗ = H, (3.35)

where

H∗∗ = (hφ,hj1 ,hj2 ,hj12 ,hj3 · · · ,hj1···jk). (3.36)

Let I2k be the 2k × 2k identity matrix. Let us denote the columns of I2k by

I2k = (eφ, e1, e2, e12, e3, e13, e23, e123, e4, . . . , e1···k),

that is, eφ = (1, 0, 0, 0, 0, · · · , 0)T , e1 = (0, 1, 0, 0, 0, · · · , 0)T , e2 = (0, 0, 1, 0, 0, · · · , 0)T ,

e12 = (0, 0, 0, 1, 0 · · · , 0)T , and so forth. Let

Cj1j2···jk = (eφ, ej1 , ej2 , ej1j2 , ej3 , ej1j3 , ej2j3 , ej1j2j3 , ej4 , · · · , ej1···jk). (3.37)

Because H∗∗ = HCj1···jk from equation (3.36), equation (3.35) can be written as

R∗∗HCj1···jk = H. (3.38)

Because H−1 = 2−kH and (Cj1···jk)−1 = (Cj1···jk)T (Cj1···jk is an orthonormal

matrix), we obtain from equation (3.38) that

R∗∗ = H(HCj1···jk)−1 = H(Cj1···jk)−1H−1 = 2−kH(Cj1···jk)TH. (3.39)

We call Cj1···jk the column permutation matrix. For a k-factor design, there are

k! different ways to perform column permutation. Define C as the collection of

Cj1j2···jk ’s for all possible permutations (j1, j2, · · · , jk) of (1, 2, · · · , k).

Let us combine the sign switch and the column permutation operations

together. Suppose that D′ is obtained from D by the sign switch of factors

47

κ1, · · · , κg and the column permutation (j1, · · · , jk) of (1, · · · , k). After perform-

ing these sign switch and column permutation operations, the design becomes

[X′|N(D)], (3.40)

where

X′ = ((−1)δj1hj1 , · · · , (−1)δjkhjk). (3.41)

Similar to the previous discussion, the matrix in equation (3.40) indicates the

design D′ and there exists a 2k × 2k matrix R such that

R[X′|N(D)] = [X|N(D′)], (3.42)

where

RX′ = X, (3.43)

and

RN(D) = N(D′). (3.44)

To obtain R, let us take λ on both sides of equation (3.43), i.e.,

λ(RX′) = λ(X). (3.45)

Because λ(RX′) = Rλ(X′), equation (3.45) can be written as

RH′ = H, (3.46)

where

H′ = ((−1)δφhφ, (−1)δj1hj1 , (−1)δj2hj2 , (−1)δj1j2hj1j2 , · · · , (−1)δj1···jkhj1···jk).

(3.47)

Let S = Sκ and C = Cj1···jk where S ∈ S and C ∈ C. Because H′ = HSC from

equation (3.47), equation (3.46) can be written as

RHSC = H. (3.48)

48

Because H−1 = 2−kH, S−1 = S and C−1 = CT , we can obtain from equation

(3.48) that

R = H(HSC)−1 = HC−1S−1H−1 = 2−kHCTSH. (3.49)

Notice that design D∗ is a special case of D′ with (j1, j2, · · · , jk) = (1, 2, · · · , k)

and D∗∗ is a special case of D′ with κ = φ. The above discussion is summarized

in the following theorem.

Theorem 4. Suppose that D and D′ are two k-factor designs with counting vec-

tors N(D) and N(D′), respectively. Two designs D and D′ are isomorphic if and

only if there exists a matrix R = 2−kHCTSH, where S ∈ S and C ∈ C, such that

RN(D) = N(D′).

Example 2. For the demonstration purpose, let A1 be a 3-factor design with

counting vector N(A1) = (1, 2, 3, 4, 5, 6, 7, 8)T . Assigning different numbers of

replicates to the runs is intended to make it clear the rearrangement of com-

ponents in the counting vector in later calculations. The model matrix of the

3-factor full factorial design is

H = (hφ,h1,h2,h12,h3,h13,h23,h123) =

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

.

Suppose that A2 is obtained from A1 by exchanging factors 1 and 3 and switching

the sign of factors 1 and 2. Because we switch the sign of factors 1 and 2, set

49

S = S12. Exchanging factors 1 and 3 is to permute the factors with (j1, j2, j3) =

(3, 2, 1), so set Cj1j2j3 = C321 obtained from I8 = (eφ, e1, e2, e12, e3, e13, e23, e123)

by exchanging e1 and e3 and exchanging e12 and e23. The S12 and C321 are shown

below.

S12 =

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

, and C321 =

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

.

From Theorem 4, we obtain

R = 2−kH(C321)TS12H =

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

.

Therefore, N(D′) = RN(D) = (4, 8, 2, 6, 3, 7, 1, 5)T .

Theorem 4 also infers that there exists a relationship between the J-vectors

of two isomorphic designs. Corollary 1 below provides the transformation matrix

for them.

Corollary 1. Suppose that D and D′ are two k-factor designs with J-vectors

J(D) and J(D′), respectively. The two designs D and D′ are isomorphic if and

only if there exists a matrix Q = CTS such that QJ(D) = J(D′), where C ∈ C

and S ∈ S.

Proof. Let N(D) and N(D′) be the counting vectors of D and D′, respectively.

By Theorem 4, there exists an R such that

RN(D) = N(D′). (3.50)

50

Multiplying H on both sides of equation (3.50), we obtain

HRN(D) = HN(D′). (3.51)

Because HH = 2kI2k , equation (3.51) can be written as

HR(2−kHH)N(D) = HN(D′). (3.52)

By substituting 2−kHCTSH for R and J for HN according to equation (3.9),

equation (3.52) becomes

2−2kHHCTSHHJ(D) = J(D′). (3.53)

Equation (3.53) can be reduced to

CTSJ(D) = J(D′). (3.54)

The result follows.

In Theorem 4, we provide a method that utilizes the the operations of matri-

ces to find a transformation matrix R for the counting vectors of two isomorphic

designs. However, readers may not want to work on such complex operations of

matrices. The following theorem provides an alternative that uses the suffix’s

operation to find the transformation between counting vectors.

Theorem 5. Let D and D′ be two k-factor designs with counting vector N(D) and

N(D′), respectively. Let T = {1, · · · , k}. Let κ = {κ1, · · · , κg}, which is a subset

of T . Let (j1, · · · , jk) be a permutation of (1, · · · , k). Define m′ =
⋃
i∈m{ji} for

all subsets m of T and a ∨ b = a ∪ b − a ∩ b where a and b are the subsets

of T . Design D and D′ are isomorphic if and only if there exist a permutation

(j1, · · · , jk) of (1, · · · , k) and a set κ such that the components of N(D) and N(D′)

have the following relationship:

Nm(D′) = Nm′∨κ(D) (3.55)

for all subsets m of T .

51

Proof. Suppose that the run xm in D′ is obtained from the run xy in D through

the sign switch of factors in κ and the column permutation (j1, · · · , jk). Then

Ny(D) = Nm(D′). (3.56)

To find y, let us separate the operations that transform D to D′ into two parts.

First, suppose that after switching sign of factors in κ of D, we obtain another

design, say D∗. The run xy in D changes into the run xy∨κ in D∗, i.e.,

Ny(D) = Ny∨κ(D∗). (3.57)

Now, suppose that after permutating the columns of D∗ by (j1, · · · , jk), we obtain

the design D′. The run xy∨κ in D∗ changes into the run xm inD′, i.e.,

Ny∨κ(D∗) = Nm(D′). (3.58)

Because D′ is obtained from permutating the columns of D∗ by (j1, · · · , jk), it is

obvious that

xy∨κ = xm′ , (3.59)

and therefore

y ∨ κ = m′. (3.60)

From equation (3.60), it is clear that

(y ∨ κ) ∨ κ = m′ ∨ κ. (3.61)

By expanding the left-hand side of equation (3.61),

(y ∨ κ) ∨ κ

= (y ∨ κ) ∪ κ− (y ∨ κ) ∩ κ

= (y ∪ κ− y ∩ κ) ∪ κ− (y ∪ κ− y ∩ κ) ∩ κ

= y ∪ κ− (κ− y ∩ κ)

= y,

(3.62)

the result follows.

52

Example 3. We use the designs A1 and A2 in Example 2 to illustrate the The-

orem 5. The counting vector of A1 is N(A1) = (1, 2, 3, 4, 5, 6, 7, 8)T = (Nφ(A1),

N1(A1), N2(A1), N12(A1), N3(A1), N13(A1), N23(A1), N123(A1))T . Design A2 is

obtained from A1 by switching the sign of factors 1 and 2 and exchanging fac-

tors 1 and 3, i.e., κ = {κ1, κ2} = {1, 2} and (j1, j2, j3) = (3, 2, 1). Take the run

x13 = (−1, 1,−1) in A1 as an example. The number of replicate of x13 in A1 is

N13(A1) = 6. First, the sign switch of factors 1 and 2 is to switch the sign of the

first two components in (−1, 1,−1), i.e., (1,−1,−1), and then the permutation of

factors 1 and 3 is to exchange the first and third elements in (1,−1,−1). Finally

we obtain (−1,−1, 1), which is the run x12 in A2, i.e., N12(A2) = 6. Working on

the sign switch and the column permutation above is equivalent to implementing

the following suffix’s operations,

N12(A2) = Nm(A2) = Nm′∨κ(A1) = Nj1j2∨κ(A1) = N32∨12(A1) = N13(A1).

The relationship of other runs between two isomorphic designs can be easily found

by the same rule. The N(A2) can be obtained by

N(A2) = (Nφ(A2), N1(A2), N2(A2), N12(A2), N3(A2), N13(A2), N23(A2), N123(A2))T

= (Nφ∨κ(A1), Nj1∨κ(A1), Nj2∨κ(A1), Nj1j2∨κ(A1), Nj3∨κ(A1), Nj1j3∨κ(A1),

Nj2j3∨κ(A1), Nj1j2j3∨κ(A1))T

= (Nφ∨12(A1), N3∨12(A1), N2∨12(A1), N32∨12(A1), N1∨12(A1), N31∨12(A1),

N21∨12(A1), N321∨12(A1))T

= (N12(A1), N123(A1), N1(A1), N13(A1), N2(A1), N23(A1), Nφ(A1), N3(A1))T

= (4, 8, 2, 6, 3, 7, 1, 5)T .

53

3.3 Examination measure based on counting vec-

tors

In section 3.2, we present some relationship between the counting vectors of iso-

morphic designs. However, it still a time-consuming task to examine isomorphism

through identifying the sign switch and column permutation operations in the re-

lationship. Based on the counting vector, we propose an examination measure,

called the split-N matrix, which provides a fast and powerful initial screening for

non-isomorphism designs. In the following sections, we prove that isomorphic

designs have the same split-N matrix and isomorphism examination by split-N

matrix is more efficient than most initial screening methods mentioned in Section

3.1.

3.3.1 Split-N vectors

To introduce split-N matrix, we define the positive and negative split-N vector

first.

Definition 1. For a design with counting vector N = (Nφ, N1, N2, N12, N3, · · · ,

N1···k)
T , let ξ be a set operator which ranks the components in a set of non-

negative integers from large to small in a vector. Let T = {1, · · · , k}. For any

non-empty subset t of T , let nt
+ denote the collection of Nm’s where m ⊆ T

such that ‖m ∩ t‖ is even. On the other hand, for any non-empty subset t of T ,

let nt
− denote the collection of Nm’s where m ⊆ T such that ‖m ∩ t‖ is odd.

Then for any non-empty subset t of T , define the positive split-N vector of t by

N+
t = ξnt

+ and the negative split-N vector of t by N−t = ξnt
−. The N+

t and N−t

are referred to as split-N vectors of t.

54

Table 3.1: Split-N vectors for the design with k = 3
N+

1 = ξ(Nφ, N2, N3, N23)T N−1 = ξ(N1, N12, N13, N123)T

N+
2 = ξ(Nφ, N1, N3, N13)T N−2 = ξ(N2, N12, N23, N123)T

N+
12 = ξ(Nφ, N12, N3, N123)T N−12 = ξ(N1, N2, N13, N23)T

N+
3 = ξ(Nφ, N1, N2, N12)T N−3 = ξ(N3, N13, N23, N123)T

N+
13 = ξ(Nφ, N2, N13, N123)T N−13 = ξ(N1, N12, N3, N23)T

N+
23 = ξ(Nφ, N1, N23, N123)T N−23 = ξ(N2, N12, N3, N13)T

N+
123 = ξ(Nφ, N12, N13, N23)T N−123 = ξ(N1, N2, N3, N123)T

Table 3.2: Split-N vectors for A1

N+
1 (A1) = (7, 5, 3, 1)T N−1 (A1) = (8, 6, 4, 2)T

N+
2 (A1) = (6, 5, 2, 1)T N−2 (A1) = (8, 7, 4, 3)T

N+
12(A1) = (8, 5, 4, 1)T N−12(A1) = (7, 6, 3, 2)T

N+
3 (A1) = (4, 3, 2, 1)T N−3 (A1) = (8, 7, 6, 5)T

N+
13(A1) = (8, 6, 3, 1)T N−13(A1) = (7, 5, 4, 2)T

N+
23(A1) = (8, 7, 2, 1)T N−23(A1) = (6, 5, 4, 3)T

N+
123(A1) = (7, 6, 4, 1)T N−123(A1) = (8, 5, 3, 2)T

Take a design with k = 3 as an example. Its counting vector is N =

(Nφ, N1, N2, N12, N3, N13, N23, N123)T . Let T = {1, 2, 3}. For t = 12, the sub-

sets m of T such that ‖m ∩ t‖ is even are φ, {3}, {1, 2}, and {1, 2, 3}. Therefore,

the positive split-N vector of t = 12 is N+
12 = ξ(Nφ, N12, N3, N123)T . On the other

hand, the subsets m of T such that ‖m∩t‖ is odd are {1}, {2}, {1, 3}, and {2, 3}.

Therefore, the negative split-N vector of t = 12 is N−12 = ξ(N1, N2, N13, N23)T . For

the design with k = 3, we list in Table 3.1 the positive and negative split-N vectors

for all non-empty subsets t of T . In Example 2, N(A1) = (1, 2, 3, 4, 5, 6, 7, 8)T .

The split-N vectors for A1 are given in Table 3.2.

Lemma 1. Let 1n be the n × 1 vector with all components being one, i.e. 1n =

(1, 1, · · · , 1)T . Let Jt be as defined in equation (3.7). For a k-factor design,

Jt = 1T2k−1N
+
t − 1T2k−1N

−
t (3.63)

where t ⊆ T but t 6= φ.

55

Proof. In equation (3.1), xmj = −1 if j ∈ m and xmj = +1 otherwise. From

equation (3.4), it is obvious that hmt = 1 for those subsets m of T such that

‖m ∩ t‖ is even and hmt = −1 for those subsets m of T such that ‖m ∩ t‖ is

odd. By applying the result to equation (3.7), the result follows.

Theorem 6. Let D and D′ be two k-factor designs with counting vectors N(D)

and N(D′), respectively. Suppose that D and D′ are isomorphic and D′ can be

obtained from D by switching signs of factors κ1, · · · , κg where g ≤ k and permut-

ing columns with the permutation (j1, · · · , jk) of (1, · · · , k). Let T = {1, · · · , k}

and define t′ =
⋃
i∈t{ji} for t ⊆ T . Let κ = {κ1, · · · , κg} and δt′ = ‖κ∩ t′‖. The

split-N vectors of D and D′ have the relationship as given below.

(1). If δt′ is even, then Nt
+(D′) = Nt′

+(D) and N−t (D′) = Nt′
−(D).

(2). If δt′ is odd, then Nt
+(D′) = Nt′

−(D) and N−t (D′) = N+
t′(D).

Proof. From equations (3.1) and (3.4), it is obvious that

hmt =

 −1, if ‖m ∩ t‖ is odd,

1, if ‖m ∩ t‖ is even.
(3.64)

Let m′ =
⋃
i∈m{ji} for all subsets m of T and t′ =

⋃
i∈t{ji} for all subsets t of

T . Notice that m is the row index and t is the column index. By substituting

m′ ∨ κ for m and t′ for t in equations (3.1) and (3.4), we obtain

xm′∨κ = (x(m′∨κ)1, · · · , x(m′∨κ)k), (3.65)

where x(m′∨κ)j = −1, if j ∈m′ ∨ κ,

x(m′∨κ)j = +1, otherwise,
(3.66)

and

h(m′∨κ)t′ =
∏
j∈t′

x(m′∨κ)j. (3.67)

56

It is obvious that by equations (3.65) and (3.67),

h(m′∨κ)t′ =

 −1, if ‖(m′ ∨ κ) ∩ t′‖ is odd,

1, if ‖(m′ ∨ κ) ∩ t′‖ is even.
(3.68)

The subset (m′ ∨ κ) ∩ t′ can be expanded as follows,

(m′ ∨ κ) ∩ t′ = (m′ ∪ κ−m′ ∩ κ) ∩ t′

= (m′ ∩ t′ −m′ ∩ κ ∩ t′) + (κ ∩ t′ −m′ ∩ κ ∩ t′).
(3.69)

From equation (3.69), the number of the components in (m′ ∨ κ) ∩ t′ is

‖(m′ ∨ κ) ∩ t′‖ = ‖m′ ∩ t′‖+ ‖κ ∩ t′‖ − 2‖m′ ∩ κ ∩ t′‖. (3.70)

Now, let us consider the case that δt′ is even, i.e., ‖κ ∩ t′‖ is even. By equation

(3.64), when hmt = −1, ‖m∩ t‖ is odd and hence ‖m′ ∩ t′‖ is odd. According to

equation (3.70), ‖(m′∨κ)∩ t′‖ is odd (odd + even − even) and hence h(m′∨κ)t′ =

−1 by equation (3.68). When hmt = 1, ‖m ∩ t‖ is even and hence ‖m′ ∩ t′‖ is

even. According to equation (3.70), ‖(m′ ∨ κ)∩ t′‖ is even (even + even − even)

and hence h(m′∨κ)t′ = 1 by equation (3.68). Therefore, when δt′ is even, hmt =

h(m′∨κ)t′ for all subsets m of T . Because Nm(D′) = N(m′∨κ)(D) by Theorem 5,

the result (1) follows by separating N(D′) into N+
t (D′) and N−t (D′) according to

the signs of the components in the column ht and separating N(D) into N+
t′(D)

and N−t′(D) according to the signs of the components in the column ht′ . Let

us now consider the case that δt′ is odd, i.e., ‖κ ∩ t′‖ is odd. When hmt = −1,

‖m∩t‖ is odd and hence ‖m′∩t′‖ is odd. Therefore ‖(m′∨κ)∩t′‖ is even (odd +

odd − even) and hence h(m′∨κ)t′ = 1 by equation (3.68). When hmt = 1, ‖m∩ t‖

is even and hence ‖m′ ∩ t′‖ is even. We have that ‖(m′ ∨ κ)∩ t′‖ is odd (even +

odd − even) and hence h(m′∨κ)t′ = −1 by equation (3.68). Therefore, when δt′ is

odd, hmt = −h(m′∨κ)t′ for all subsets m of T . Because Nm(D′) = N(m′∨κ)(D) by

Theorem 5, the result (2) follows by separating N(D′) into N+
t (D′) and N−t (D′)

according to the signs of the components in the column ht and separating N(D)

into N+
t′(D) and N−t′(D) according to the signs of the components in the column

ht′ .

57

Example 4. We use the designs A1 and A2 in Example 2 to illustrate the Theo-

rem 6. Notice that N(A1) = (Nφ(A1), N1(A1), N2(A1), N12(A1), N3(A1), N13(A1),

N23(A1), N123(A1))T = (1, 2, 3, 4, 5, 6, 7, 8)T . Let κ = {κ1, κ2} = {1, 2} and

(j1, j2, j3) = (3, 2, 1). First, take t = 23 as an example. When t = 23, t′ =

j2j3 = 12 and δt′ = 2 (even). According to Theorem 5, when t = 23, N+
23(A2)

can be obtained from Table 3.1 by

N+
23(A2) = ξ(Nφ∨κ(A2), N1∨κ(A2), N23∨κ(A2), N123∨κ(A2))T

= ξ(Nφ∨κ(A1), Nj1∨κ(A1), Nj2j3∨κ(A1), Nj1j2j3∨κ(A1))T

= ξ(Nφ∨12(A1), N3∨12(A1), N21∨12(A1), N321∨12(A1))T

= ξ(N12(A1), N123(A1), Nφ(A1), N3(A1))T

= (8, 5, 4, 1)T ,

By Table 3.2, it is obvious that N+
23(A2) equals N+

12(A1). Moreover,

N−23(A2) = ξ(N2∨κ(A2), N12∨κ(A2), N3∨κ(A2), N13∨κ(A2))T

= ξ(Nj2∨κ(A1), Nj1j2∨κ(A1), Nj3∨κ(A1), Nj1j3∨κ(A1))T

= ξ(N2∨12(A1), N32∨12(A1), N1∨12(A1), N31∨12(A1))T

= ξ(N1(A1), N13(A1), N2(A1), N23(A1))T

= (7, 6, 3, 2)T .

By Table 3.2, it is clear that N−23(A2) equals N−12(A1). The results verify the

Theorem 6 (1). Let us take t = 3 as another example. When t = 3, t′ = j3 = 1

and δt′ = 1 (odd). Similarly, the N+
3 (A2) and N−3 (A2) can be obtained by

N+
3 (A2) = ξ(Nφ∨κ(A1), Nj1∨κ(A1), Nj2∨κ(A1), Nj1j2∨κ(A1))T

= ξ(Nφ∨12(A1), N3∨12(A1), N2∨12(A1), N32∨12(A1))T

= ξ(N12(A1), N123(A1), N1(A1), N13(A1))T

= (8, 6, 4, 2)T

= N−1 (A1),

58

Table 3.3: Relationship of split-N vectors between A1 and A2

N+
1 (A2) = N+

j1
(A1) = N+

3 (A1) N−1 (A2) = N−j1 (A1) = N−3 (A1)

N+
2 (A2) = N−j2 (A1) = N−2 (A1) N−2 (A2) = N+

j2
(A1) = N+

2 (A1)

N+
12(A2) = N−j1j2 (A1) = N−23(A1) N−12(A2) = N+

j1j2
(A1) = N+

23(A1)

N+
3 (A2) = N−j3 (A1) = N−1 (A1) N−3 (A2) = N+

j3
(A1) = N+

1 (A1)

N+
13(A2) = N−j1j3 (A1) = N−13(A1) N−13(A2) = N+

j1j3
(A1) = N+

13(A1)

N+
23(A2) = N+

j2j3
(A1) = N+

12(A1) N−23(A2) = N−j2j3 (A1) = N−12(A1)

N+
123(A2) = N+

j1j2j3
(A1) = N+

123(A1) N−123(A2) = N−j1j2j3 (A1) = N−123(A1)

and

N−3 (A2) = ξ(Nj3∨κ(A1), Nj1j3∨κ(A1), Nj2j3∨κ(A1), Nj1j2j3∨κ(A1))T

= ξ(N1∨12(A1), N31∨12(A1), N21∨12(A1), N321∨12(A1))T

= ξ(N2(A1), N23(A1), Nφ(A1), N3(A1))T

= (7, 5, 3, 1)T

= N+
1 (A1).

The results verify the Theorem 6 (2). The relationship of split-N vectors for all

non-empty subsets t of T between A1 and A2 is listed in Table 3.3.

3.3.2 Split-N matrix

Definition 2. Define the priority rule for two vectors as follows. For two n× 1

vectors, A = (a1, · · · , an)T and B = (b1, · · · , bn)T , A is said to be prior to B,

denoted by A � B, if there exists a v (≤ n) such that ai = bi for i < v and ai > bi

for i = v. When A is prior or equal to B, it is denoted by A � B .

Definition 3. Let Nt = (Nt
+T ,Nt

−T)T if N+
t � N−t and Nt = (Nt

−T ,Nt
+T)T

otherwise. For all Nt’s with ‖t‖ = j, arrange them in the order defined in

Definition 2 and write them as Nj
(1) � Nj

(2) � · · · � Nj

((kj))
. The split-N matrix

is then defined by

Nsp = (N1
(1), · · · ,N1

((k1)),N
2
(1), · · · ,N2

((k2)), · · · ,N
k
((kk))). (3.71)

59

Theorem 7. If D and D′ are isomorphic, then Nsp(D) = Nsp(D′).

Proof. Suppose that D′ is obtained from D by switching the sign of factors

κ1, · · · , κg, and permuting columns by (j1, · · · , jk). Let T = {1, · · · , k} and

t′ =
⋃
i∈t{ji} for t ⊆ T . Let Gj(D) be the collection of all split-N vectors of

design D with ‖t‖ = j and Gj(D′) be the collection of all split-N vectors of design

D′ with ‖t′‖ = j. By Theorem 6, Gj(D) = Gj(D′) for j = 1, · · · , k. Because

Nsp(D) (Nsp(D′)) is obtained by arranging the split-N vectors in Gj(D) (Gj(D′))

according to the order in Definition 2 and then merging them into a matrix,

Nsp(D) must be identical to Nsp(D′).

Example 5. The split-N matrices of A1 and A2 in Example 2 are

Nsp(A1) = Nsp(A2) =

8 8 8 8 8 8 8

7 7 6 7 6 5 5

6 4 4 2 3 4 2

5 3 2 1 1 1 2

4 6 7 6 7 7 7

3 5 5 5 5 6 6

2 2 3 4 4 3 4

1 1 1 3 2 2 1

.

The first three columns correspond to Nt(A1)’s (or Nt(A2)’s) with ‖t‖ = 1, col-

umn 4 to column 6 correspond to Nt(A1)’s (or Nt(A2)’s) with ‖t‖ = 2 and the

last column is N3(A1) (or N3(A2)).

Notice that in the split-N matrices of two isomorphic designs, the difference in

their design matrices caused by row permutation, column permutation, and sign

switch vanishes. The effect of the row permutation on design matrix is vanished

in the split-N matrix because of the use of counting vector. When the counting

60

vector is divided into the negative and positive split-N vectors according to Defi-

nition 1 and arranged into Nt’s according to Definition 3, the effect of sign switch

disappears. Finally, by ordering the Nt’s to form the split-N matrices accord-

ing to Definition 3, the effect of the column permutation is eliminated. In other

words, split-N matrix is invariant to row permutation, column permutation and

sign switch operations. Theorem 7 shows that when two designs are isomorphic,

their split-N matrices are identical. It implies that for two designs with different

split-N matrices, they must be non-isomorphic. Therefore, split-N matrix can be

used as an initial screening measure for isomorphism examination. Compared to

most initial screening methods mentioned in Section 3.1, the method based on

split-N matrix is more powerful, as shown by the following theorem.

Theorem 8. For two designs D and D′,

(a). if Nsp(D) = Nsp(D′), then CFV (D) = CFV (D′);

(b). if CFV (D) = CFV (D′), then GWLP (D) = GWLP (D′);

(c). if GWLP (D) = GWLP (D′), then CD2
2(D) = CD2

2(D′) and Ku(D) =

Ku(D′) for u = 1, · · · , k.

Proof. Suppose that D and D′ are k-factor designs with n runs. Recall that lji in

CFV records the number of t’s such that |Jt| = (n+ 1− i) for all subsets t of T

with ‖t‖ = j. Columns 1 to k in Nsp(D) are the ordered Nt(D)’s with ‖t‖ = 1.

Because Nt(D) is composed of Nt
+(D) and Nt

−(D), and |Jt| = |1T2k−1N
+
t (D)−

1T
2k−1N

−
t (D)| by Lemma 1, the l1,1, · · · , l1,n of CFV (D) can be obtained from

columns 1 to k in Nsp(D). Other lji’s for j = 2, · · · , k and i = 1, · · · , n can

be similarly derived from Nsp(D). Therefore, CFV (D) is completed determined

by Nsp(D). Similarly, CFV (D′) is determined by Nsp(D′). When Nsp(D) =

Nsp(D′), the result (a) follows. If CFV (D) = CFV (D′), the frequencies of Jt’s

where ‖t‖ = j are identical for D and D′. Because αj is a function of square of

Jt’s where ‖t‖ = j by equation (3.13), αj(D) equals to αj(D′) for j = 1, · · · , k.

The result (b) follows. By equations (3.14) and (3.15), CD2
2 and Ku are functions

61

of GWLP . Therefore, two designs with the same GWLP have the same CD2
2

and same Ku. Results (c) and (d) follow.

Theorem 8 implies that Nsp is more powerful in terms of the ability to

classify non-isomorphic designs than other measures appeared in this theorem.

For instance, Theorem 8 (a) shows that if CFV (D) 6= CFV (D′), Nsp(D) must

be different from Nsp(D′), but if Nsp(D) 6= Nsp(D′), CFV (D) may still equal

CFV (D′). In other words, non-isomorphic designs that can be distinguished

by CFV can be classified by Nsp, but not the other way around. Define the

examination efficiency for measure M by

eff(M) =
number of distinguishable non-isomorphism groups by M

number of total non-isomorphic groups
. (3.72)

According to Theorem 8, the examination efficiencies of the initial screening mea-

sures mentioned in Theorem 8 can be ranked as:

eff(Nsp) ≥ eff(CFV) ≥ eff(GWLP) ≥ eff(CD2
2), eff(Ku). (3.73)

3.3.3 Projection

The application of the projection to the isomorphism examination has been in-

troduced in Section 3.1. Briefly speaking, for a k-factor design, there are (kp)

p-dimensional projections. We can apply the measures mentioned above on each

of the (kp) projections to obtain a p-dimensional projection frequency. If designs D

and D′ are isomorphic, their p-dimensional projection frequency are identical. In

other words, if there exists some p where 1 ≤ p ≤ k such that the p-dimensional

projection frequencies of D and D′ are different, then D and D′ must be non-

isomorphic. Notice that the classification measures obtained from the projected

matrices reveal more information than that calculated from the original design

62

matrix. Two designs may have the same value of a classification measure but

different p-dimensional projection frequencies. Therefore, for any measure, the

initial screening method with projection is more efficient than the method without

projection. The projection frequencies for the measures CFV , GWLP , CD2
2, Ku,

and HD are denoted by PCFV , PGWLP , PCD2
2
, PKu , and Deseq1, respectively. In

this dissertation, we also apply the technique of projection on the split-N matrix to

increase its efficiency for isomorphism examination. We define the p-dimensional

Nsp projection frequency in Definition 4. The collection of these p-dimensional

Nsp projection frequencies for p = 1, · · · , k is referred to as the projection fre-

quency of Nsp and denoted by PNsp .

Definition 4. Let D be a k-factor design. Let T = {1, · · · , k} and w ⊂ T .

Let T(−w) = T − w and p = k − ‖w‖. For all Nt’s where t ⊆ T(−w) and

‖t‖ = j, arrange them in the order defined in Definition 2 and write them as

Nj
(1) � Nj

(2) � · · · � Nj
((pj))

. Define the leave-w-out split-N matrix of design D

by

Nsp
(−w)(D) = (N1

(1), · · · ,N1
((p1)),N

2
(1), · · · ,N2

((p2)), · · · ,N
p
((pp))

), (3.74)

where Nsp
(−w) is referred to as a p-dimensional split-N matrix. For a given p, there

are (kp) p-dimensional projections and hence there are (kp) p-dimensional split-N

matrices. The frequency of these p-dimensional split-N matrices is called the p-

dimensional Nsp projection frequency for p = 1, · · · , k. When w = φ, i.e., p = k,

equation (3.74) is the split-N matrix of design D.

Theorem 9. If D and D′ are isomorphic, then PNsp(D) = PNsp(D′).

Proof. When D and D′ are isomorphic, there exists a one-to-one correspondence

between their projections. Therefore, the p-dimensional Nsp projection frequency

of D and D′ must be identical.

63

Corollary 2. For two designs D and D′,

(a). if PNsp(D) = PNsp(D′), then PCFV (D) = PCFV (D′);

(b). if PCFV (D) = PCFV (D′), then PGWLP (D) = PGWLP (D′);

(c). if PGWLP (D) = PGWLP (D′), then PCD2
2
(D) = PCD2

2
(D′) and PKu(D) =

PKu(D′) for u = 1, · · · , k.

Proof. The results directly follow by Theorem 8.

According to Theorem 9 and Corollary 2, it is clear that

eff(PNsp) ≥ eff(PCFV) ≥ eff(PGWLP) ≥ eff(PCD2
2
), eff(PKu). (3.75)

3.3.4 Simplified methods

To use the split-N matrix to preform the isomorphism examination for two k-

factor designs, it is required to compare two 2k × (2k − 1) matrices. The compu-

tation time and the storage memory dramatically increase when k becomes large.

In this section, we propose some simplified methods based on the split-N matrix

for the designs with large k.

For designs with single replicate, all components in the counting vector are

either 1 or 0. In this case, the isomorphism examination based on Nsp is equiv-

alent to the examination based on the CFV . When the components in the

counting vector are either 1 or 0, Nsp is completely determined by CFV and

vice versa. Take the design with counting vector N = (1, 1, 0, 0, 1, 0, 1, 1)T as an

example. When |Jt| = 1, because |Jt| = |(1T
2k−1N

+
t − 1T

2k−1N
−
t)| by Lemma 1,

the split-N vectors of t, i.e., N+
t and N−t , must meet one of the following condi-

tions: (a). N+
t = (1, 1, 1, 0)T and N−t = (1, 1, 0, 0)T , or (b). N+

t = (1, 1, 0, 0)T

64

and N−t = (1, 1, 1, 0)T . According to Definition 3, either conditions would give

Nt = (1, 1, 1, 0, 1, 1, 0, 0). Similar argument can be applied for other values of Jt

to obtain Nt. Because the CFV records the frequency of values of |Jt|’s and Nsp

is obtained from Nt’s according to Definition 3, the split-N matrix is completed

determined by CFV for the design with single replicate. In other words, the

examination efficiencies of the Nsp and CFV are identical in this case. Because

CFV requires less storage memory and less computation time, it can be used to

replace Nsp to perform the isomorphism examination when the components of

counting vector are either 1 or 0.

The split-N vectors for isomorphic designs have the relationship as given

in Theorem 6. Let us sum up the split-N vectors over t with ‖t‖ = j, i.e.,

SNj(D) =
∑

t⊆T ;‖t‖=j(N
+
t (D) + N−t (D)) for j = 1, · · · , k, and define the sum of

split-N matrix as

SNsp(D) = (SN1(D), · · · ,SNk(D)). (3.76)

According to Theorem 7, when designs D and D′ are isomorphic, Nsp(D) =

Nsp(D′) and hance SNsp(D) = SNsp(D′) by Theorem 6. It implies that SNsp

can also be used as a measure for the isomorphism examination. In Example 2,

the sum of split-N matrices of A1 and A2 are

SNsp(A1) = SNsp(A2) =

41 44 15

33 34 11

21 20 7

13 10 3

 .

Because SNsp greatly reduces the dimension of Nsp from 2k×(2k−1) to 2k−1×k,

the isomorphism examination based on SNsp can significantly save the compari-

son time and the storage memory. However, because different Nsp’s may generate

the same SNsp, the examination efficiency of SNsp is lower than than that of Nsp.

In practice, we find that the efficiencies of SNsp and Nsp are very closed (see the

65

examples given in Section 3.4). When SNsp is applied together with the tech-

nique of projections, we denote its projection frequency as PSNsp .

For the highly fractional factorial designs, a lot of components in their count-

ing vector are zero. These zero components appear in the bottoms of N+
t ’s and

N−t ’s, which make the split-N matrix contain many rows with components all

zero. These rows can be ignored to reduce the redundant comparison. For in-

stance, let D be a highly fractional factorial designs. Let Nt∗
+(D) (or Nt∗

+(D))

be the split-N vector that contains the least number, say r, of zero components

among all Nt
+(D)’s and Nt

−(D)’s. Then from Definition 3, it is clear that in the

split-N matrix, the (2k−1−r+1)th to the 2k−1th rows and the (2k−r+1)th to the

2kth rows are all zero. Let us denote by the split-N* matrix the (2k−2r)×(2k−1)

matrix obtained from the split-N matrix by deleting these zero rows. The result of

Theorem 6 still holds when the split-N matrix is replaced by the split-N* matrix.

Therefore, the split-N* matrix can also be used as a measure for isomorphism

examination. It reduces the dimension of the split-N matrix from 2k × (2k − 1)

to (2k− 2r)× (2k− 1). This technique can also be applied to the SNsp to reduce

the dimension from 2k−1 × k to (2k−1 − r)× k.

3.4 Some comparisons

In this section, we use three examples to study the classification efficiency of the

methods we propose in the previous sections and compare their performance with

some initial screening methods existing in the literature.

Example 6. Katsaounis and Dean (2008) used two 4-factor designs, denoted in

their paper by df1 and df5, to illustrate the power of their method for isomor-

phism examination. Among all the initial screening methods introduced in their

66

paper, such as Deseq1, PCD2
2
, PKu , PCFV , CFV4, 4R-prof, 8R-prof, gen-4R and

ext-4R, only Desq1 can classify df1 and df5 as non-isomorphic. The two designs

can be represent in terms of counting vectors as follows:

N(df1) = (1, 0, 1, 1, 1, 3, 2, 1, 1, 1, 0, 2, 0, 0, 0, 2)T ,

and

N(df5) = (2, 0, 1, 2, 1, 0, 1, 0, 1, 0, 3, 1, 1, 2, 0, 1)T .

The split-N matrices of df1 and df5 are

Nsp(df1) =

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 1 2 2 2 2 2 1 2 2 2 2 2

2 2 1 1 2 2 1 1 1 1 2 2 1 1 2

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1 1 1 1 0 0 1 1 1 1 1

1 0 1 0 1 0 1 0 0 0 1 1 1 1 1

0 0 1 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 1 2 2 2 2

1 1 2 2 1 1 2 2 2 2 1 1 2 2 1

1 1 1 2 1 1 1 1 1 2 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1 1 1 1 0 1 1

0 1 0 1 0 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

and

Nsp(df5) =

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 1 2 2 2 1 2

2 1 1 1 2 2 1 1 1 1 2 2 2 1 2

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 1 1 0 1

0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 1 2 2 2 2

1 2 2 2 1 1 2 2 2 2 1 1 1 2 1

1 1 1 1 1 1 1 1 1 2 1 1 1 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 1 1 1 1 1 0 1 1 1

0 0 0 0 0 0 1 1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

67

Because the second columns of Nsp(df1) and Nsp(df5) are different, the split-

N method can quickly identify the two designs as non-isomorphic. The sum of

split-N matrices are:

SNsp(df1) =

20 30 19 5

13 21 14 3

11 15 10 3

8 12 9 2

7 9 7 2

4 6 4 1

1 3 1 0

0 0 0 0

and SNsp(df5) =

20 30 19 5

15 21 12 3

19 15 12 3

8 12 9 2

7 9 7 2

4 6 4 1

1 3 1 0

0 0 0 0

.

Because the first and the third columns of SNsp(df1) and SNsp(df5) are ap-

parently different, the SNsp measure can also classify them as non-isomorphic

designs. This example demonstrates how to use our methods to perform the iso-

morphism examination and shows that although most initial screening methods

fail to distinguish the two designs, our methods still have good performance.

Example 7. Designs B1 to B8 are eight non-isomorphic OA(32, 5, 2, 2)’s with

counting vectors

N(B1) = (1, 3, 1, 1, 0, 0, 0, 2, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 2, 1, 1, 1, 1, 3, 0, 2, 0, 0)T ,

N(B2) = (1, 1, 3, 0, 0, 1, 0, 2, 1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 1, 0, 3, 1, 0, 2, 0)T ,

N(B3) = (0, 0, 3, 0, 2, 1, 1, 1, 1, 2, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 2, 0, 0, 1, 1, 0, 3, 1)T ,

N(B4) = (1, 1, 2, 0, 0, 0, 1, 3, 2, 1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 1, 1, 0, 0, 0, 1, 3, 1, 1, 2, 0)T ,

N(B5) = (0, 0, 3, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 0, 3, 1)T ,

N(B6) = (1, 0, 2, 1, 2, 1, 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 3, 0, 0, 1, 0, 1, 3, 0)T ,

N(B7) = (1, 0, 2, 1, 2, 1, 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 3, 0, 0, 1, 0, 1, 3, 0)T ,

N(B8) = (0, 1, 0, 1, 3, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 0, 1, 0, 1, 0, 0, 3, 2, 1)T .

Besides Nsp and SNsp, we also use the methods CFV , GWLP , CD2
2, Ku, and

HD and their projection versions PCFV , PGWLP , PCD2
2
, PKu , and Deseq1 to per-

form the isomorphism examination. The classification results are presented in

68

Table 3.4. The first part of Table 3.4 contains the examination results of Nsp and

SNsp. It shows that even though the projection technique is not applied, the Nsp

can still 100% discriminate the eight non-isomorphic designs, and the simplified

method SNsp is as powerful as Nsp in this case. The second part contains the

results of CFV , GWLP , CD2
2, Ku and HD. We find that when the projec-

tion technique is not applied, the overall CFV can only separate these designs

into two groups, {B1,B4,B5,B6} and {B2,B3,B7,B8}. The other overall mea-

sures completely fail to distinguish any of these designs as non-isomorphic. Even

thought the projection technique is adopted, the projection frequency, PCFV ,

PGWLP , PCD2
2
, PKu , and Deseq1, still cannot fully distinguish the eight designs.

The third part on the bottom of the table gives the results of these methods.

It shows that projection frequencies cannot discriminate B7 and B8. In Sec-

tion 3.3.2, equation (3.73) shows that Nsp has higher examination efficiency than

CFV , GWLP , CD2
2, and Ku, but does not indicate how much higher. In this ex-

ample, we find that the efficiency of Nsp is eight times higher than the efficiencies

of GWLP , CD2
2, and Ku. We also find that the efficiency of HD is only 12.5%

which is mush lower than the efficiency of Nsp for the eight designs. The power

of the projection technique can also be found in this example. With projection,

the efficiency greatly increases from 12.5% to 87.5%.

Example 8. In this example, we perform the isomorphism examination for vari-

ous OA(n, k, s, d)’s using the initial screening methods introduced in this article.

The number of the non-isomorphic OA(n, k, s, d)’s can be found in Stufken and

Tang (2007), Sun, Li, and Ye (2002) and the results in Section 2.5.2. In Tables 3.5

and 3.6, the notation OA(n, k, s, d) : w represents that there are w non-isomorphic

designs in total for the case of OA(n, k, s, d). The following rows show the exam-

ination efficiency and the number of non-isomorphism groups identified by each

method (on the left-hand side and right-hand side of the colon separately). From

the two tables, we find that in most cases, the efficiencies of Nsp and SNsp are

69

Table 3.4: Result of isomorphism examination for the designs in example 7
Methods Examining result Efficiency

Nsp {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7}, {B8} 100%

SNsp {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7}, {B8} 100%

CFV {B1,B4,B5,B6}, {B2,B3,B7,B8} 25%

GWLP {B1,B2,B3,B4,B5,B6,B7,B8} 12.5%

CD2
2 {B1,B2,B3,B4,B5,B6,B7,B8} 12.5%

Ku {B1,B2,B3,B4,B5,B6,B7,B8} 12.5%

HD {B1,B2,B3,B4,B5,B6,B7,B8} 12.5%

PCFV {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7,B8} 87.5%

PGWLP {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7,B8} 87.5%

PCD2
2

{B1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7,B8} 87.5%

PKu {By1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7,B8} 87.5%

Deseq1 {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, {B7,B8} 87.5%

close to 100% and much higher than the other methods. For the cases that Nsp

and SNsp cannot fully classify the non-isomorphic designs (i.e., efficiencies are

lower than 100%), the projection frequencies of Nsp and SNsp can significantly

improve the efficiencies to almost 100%, which is much higher than the efficien-

cies of the other methods. For instance, in OA(36, 5, 2, 2), the efficiencies of Nsp

and SNsp are 99.3% and 98.4%, respectively, but it is only 67.0% for HD, 23.1%

for CFV , and 13.8% for the other methods. After the projection technique is

applied, the efficiencies of PNsp and PSNsp can reach to 100% and 99.9%, respec-

tively, but it is only 95.0% for Deseq1, and even less than 60.0% for the other

methods. In Section 3.3, equations (3.73) and (3.75) indicate that the initial

screening methods based on Nsp and PNsp dominate the methods based on the

other measures except HD and Deseq1. In the two tables, we find that only

in the case of OA(20, 6, 2, 2), the efficiency of HD is 1.3% higher than Nsp. In

the other cases, Nsp and PNsp has better (or same) performance than HD and

Deseq1, respectively. For instance, in the case of OA(16, 6, 2, 2), the efficiency of

Nsp is 33.3% higher than the efficiency of HD and in the case of OA(28, 5, 2, 2),

the efficiency of PNsp is 6.3% higher than the efficiency of Deseq1. From the two

tables, we also find that the projection technique can greatly enhances the exam-

70

ination efficiency. In the case of OA(20, 6, 2, 2), all methods without projection

have poor efficiencies: 69.3% for HD, 68.0% for Nsp and SNsp, and 56% for the

other methods. However, the efficiencies of PNsp and PSNsp reach 100%, and it

is 96% for Deseq1, and higher than 90% for the other methods. Although the

simplified method based on SNsp is less efficient than the method based on Nsp

as mentioned above, we find in the two tables that the efficiencies of SNsp and

Nsp are very close. Even though in the case of OA(32, 4, 2, 2), the efficiencies of

SNsp and PSNsp are lower than the efficiencies of CFV and PCFV , the SNsp and

PSNsp usually have better performance than the other methods when the number

of non-isomorphic OA(n, k, d, s)’s increases.

71

T
ab

le
3.

5:
T

h
e

is
om

or
p
h
is

m
ex

am
in

at
io

n
of

th
e

in
it

ia
l

sc
re

en
in

g
m

et
h
o
d
s

O
A

(2
4
,4
,2
,2

)
:
1
0

O
A

(3
2
,4
,2
,2

)
:
1
9

O
A

(3
6
,4
,2
,2

)
:
1
5

O
A

(4
0
,4
,2
,2

)
:
3
2

O
A

(4
4
,4
,2
,2

)
:
2
8

O
A

(4
8
,4
,2
,2

)
:
5
4

O
A

(5
2
,4
,2
,2

)
:
4
8

N
s
p

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
2

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
4

1
0
0
.0

%
:

4
8

S
N
s
p

1
0
0
.0

%
:

1
0

9
4
.7

%
:

1
8

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
2

9
6
.4

%
:

2
7

9
4
.4

%
:

5
1

9
7
.9

%
:

4
7

C
F
V

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
6
.9

%
:

3
1

1
0
0
.0

%
:

2
8

9
6
.3

%
:

5
2

1
0
0
.0

%
:

4
8

G
W
L
P

9
0
.0

%
:

9
8
9
.5

%
:

1
7

9
3
.3

%
:

1
4

8
4
.4

%
:

2
7

8
2
.1

%
:

2
3

7
7
.8

%
:

4
2

7
9
.2

%
:

3
8

C
D

2 2
9
0
.0

%
:

9
8
9
.5

%
:

1
7

9
3
.3

%
:

1
4

8
4
.4

%
:

2
7

8
2
.1

%
:

2
3

7
7
.8

%
:

4
2

7
7
.1

%
:

3
7

K
u

9
0
.0

%
:

9
8
9
.5

%
:

1
7

9
3
.3

%
:

1
4

8
4
.4

%
:

2
7

8
2
.1

%
:

2
3

7
7
.8

%
:

4
2

7
9
.2

%
:

3
8

H
D

1
0
0
.0

%
:

1
0

9
4
.7

%
:

1
8

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
2

9
6
.4

%
:

2
7

1
0
0
.0

%
:

5
4

1
0
0
.0

%
:

4
8

P
N

s
p

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
2

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
4

1
0
0
.0

%
:

4
8

P
S
N

s
p

1
0
0
.0

%
:

1
0

9
4
.7

%
:

1
8

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
2

9
6
.4

%
:

2
7

9
4
.4

%
:

5
1

9
7
.9

%
:

4
7

P
C
F
V

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
6
.9

%
:

3
1

1
0
0
.0

%
:

2
8

9
6
.3

%
:

5
2

1
0
0
.0

%
:

4
8

P
G
W
L
P

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
6
.9

%
:

3
1

1
0
0
.0

%
:

2
8

9
6
.3

%
:

5
2

1
0
0
.0

%
:

4
8

P
C
D

2 2
1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
6
.9

%
:

3
1

1
0
0
.0

%
:

2
8

9
6
.3

%
:

5
2

1
0
0
.0

%
:

4
8

P
K

u
1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
6
.9

%
:

3
1

1
0
0
.0

%
:

2
8

9
6
.3

%
:

5
2

1
0
0
.0

%
:

4
8

D
es
eq

1
1
0
0
.0

%
:

1
0

9
4
.7

%
:

1
8

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
2

9
6
.4

%
:

2
7

1
0
0
.0

%
:

5
4

1
0
0
.0

%
:

4
8

O
A

(1
6
,5
,2
,2

)
:
1
1

O
A

(2
0
,5
,2
,2

)
:
1
1

O
A

(2
4
,5
,2
,2

)
:
6
3

O
A

(2
8
,5
,2
,2

)
:
1
2
7

O
A

(3
2
,5
,2
,2

)
:
4
9
1

O
A

(3
6
,5
,2
,2

)
:
1
2
4
2

O
A

(1
6
,6
,2
,2

)
:
2
7

N
s
p

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

6
3

9
8
.4

%
:

1
2
5

9
9
.2

%
:

4
8
7

9
9
.3

%
:

1
2
3
3

9
6
.3

%
:

2
6

S
N
s
p

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

6
3

9
8
.4

%
:

1
2
5

9
6
.9

%
:

4
7
6

9
8
.4

%
:

1
2
2
2

9
6
.3

%
:

2
6

C
F
V

1
0
0
.0

%
:

1
1

9
0
.9

%
:

1
0

7
7
.8

%
:

4
9

4
6
.5

%
:

5
9

4
5
.2

%
:

2
2
2

2
3
.1

%
:

2
8
7

9
6
.3

%
:

2
6

G
W
L
P

9
0
.9

%
:

1
0

9
0
.9

%
:

1
0

5
8
.7

%
:

3
7

4
0
.2

%
:

5
1

2
6
.1

%
:

1
2
8

1
3
.8

%
:

1
7
1

6
3
.0

%
:

1
7

C
D

2 2
9
0
.9

%
:

1
0

9
0
.9

%
:

1
0

5
8
.7

%
:

3
7

4
0
.2

%
:

5
1

2
6
.1

%
:

1
2
8

1
3
.8

%
:

1
7
1

6
3
.0

%
:

1
7

K
u

9
0
.9

%
:

1
0

9
0
.9

%
:

1
0

5
8
.7

%
:

3
7

4
0
.2

%
:

5
1

2
6
.1

%
:

1
2
8

1
3
.8

%
:

1
7
1

6
3
.0

%
:

1
7

H
D

9
0
.9

%
:

1
0

1
0
0
.0

%
:

1
1

7
4
.6

%
:

4
7

7
8
.7

%
:

1
0
0

6
7
.0

%
:

3
2
9

6
7
.0

%
:

8
3
2

6
3
.0

%
:

1
7

P
N

s
p

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

6
3

1
0
0
.0

%
:

1
2
7

1
0
0
.0

%
:

4
9
1

1
0
0
.0

%
:

1
2
4
2

1
0
0
.0

%
:

2
7

P
S
N

s
p

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

6
3

1
0
0
.0

%
:

1
2
7

9
9
.2

%
:

4
8
7

9
9
.9

%
:

1
2
4
1

1
0
0
.0

%
:

2
7

P
C
F
V

1
0
0
.0

%
:

1
1

9
0
.9

%
:

1
0

9
2
.1

%
:

5
8

7
0
.1

%
:

8
9

7
5
.6

%
:

3
7
1

5
8
.7

%
:

7
2
9

1
0
0
.0

%
:

2
7

P
G
W
L
P

1
0
0
.0

%
:

1
1

9
0
.9

%
:

1
0

9
2
.1

%
:

5
8

6
9
.3

%
:

8
8

7
5
.6

%
:

3
7
1

5
8
.7

%
:

7
2
9

1
0
0
.0

%
:

2
7

P
C
D

2 2
1
0
0
.0

%
:

1
1

9
0
.9

%
:

1
0

9
0
.5

%
:

5
7

6
5
.4

%
:

8
3

7
5
.6

%
:

3
7
1

5
8
.7

%
:

7
2
9

1
0
0
.0

%
:

2
7

P
K

u
1
0
0
.0

%
:

1
1

9
0
.9

%
:

1
0

9
2
.1

%
:

5
8

6
9
.3

%
:

8
8

7
5
.6

%
:

3
7
1

5
8
.7

%
:

7
2
9

1
0
0
.0

%
:

2
7

D
es
eq

1
1
0
0
.0

%
:

1
1

1
0
0
.0

%
:

1
1

9
6
.8

%
:

6
1

9
3
.7

%
:

1
1
9

9
7
.1

%
:

4
7
7

9
5
.0

%
:

1
1
8
0

1
0
0
.0

%
:

2
7

72

T
ab

le
3.

6:
T

h
e

is
om

or
p
h
is

m
ex

am
in

at
io

n
of

th
e

in
it

ia
l

sc
re

en
in

g
m

et
h
o
d
s

O
A

(2
0
,6
,2
,2

)
:
7
5

O
A

(4
8
,5
,2
,3

)
:
1
0

O
A

(6
4
,5
,2
,3

)
:
1
9

O
A

(7
2
,5
,2
,3

)
:
1
5

O
A

(8
0
,5
,2
,3

)
:
3
3

O
A

(8
8
,5
,2
,3

)
:
2
8

O
A

(9
6
,5
,2
,3

)
:
5
6

N
s
p

6
8
.0

%
:

5
1

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
3

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
6

S
N
s
p

6
8
.0

%
:

5
1

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
3

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
6

C
F
V

5
6
.0

%
:

4
2

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
7
.0

%
:

3
2

1
0
0
.0

%
:

2
8

9
6
.4

%
:

5
4

G
W
L
P

5
6
.0

%
:

4
2

9
0
.0

%
:

9
8
4
.2

%
:

1
6

9
3
.3

%
:

1
4

7
5
.8

%
:

2
5

8
2
.1

%
:

2
3

6
7
.9

%
:

3
8

C
D

2 2
5
6
.0

%
:

4
2

9
0
.0

%
:

9
8
4
.2

%
:

1
6

9
3
.3

%
:

1
4

7
5
.8

%
:

2
5

8
2
.1

%
:

2
3

6
7
.9

%
:

3
8

K
u

5
6
.0

%
:

4
2

9
0
.0

%
:

9
8
4
.2

%
:

1
6

9
3
.3

%
:

1
4

7
5
.8

%
:

2
5

8
2
.1

%
:

2
3

6
7
.9

%
:

3
8

H
D

6
9
.3

%
:

5
2

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
3

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
6

P
N

s
p

1
0
0
.0

%
:

7
5

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
3

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
6

P
S
N

s
p

1
0
0
.0

%
:

7
5

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
3

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
6

P
C
F
V

9
2
.0

%
:

6
9

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
7
.0

%
:

3
2

1
0
0
.0

%
:

2
8

9
6
.4

%
:

5
4

P
G
W
L
P

9
2
.0

%
:

6
9

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
7
.0

%
:

3
2

1
0
0
.0

%
:

2
8

9
6
.4

%
:

5
4

P
C
D

2 2
9
3
.3

%
:

6
9

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
7
.0

%
:

3
2

1
0
0
.0

%
:

2
8

9
6
.4

%
:

5
4

P
K

u
9
2
.0

%
:

6
9

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

9
7
.0

%
:

3
2

1
0
0
.0

%
:

2
8

9
6
.4

%
:

5
4

D
es
eq

1
9
6
.0

%
:

7
2

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

1
9

1
0
0
.0

%
:

1
5

1
0
0
.0

%
:

3
3

1
0
0
.0

%
:

2
8

1
0
0
.0

%
:

5
6

O
A

(3
2
,6
,2
,3

)
:
1
0

O
A

(4
0
,6
,2
,3

)
:
9

O
A

(4
8
,6
,2
,3

)
:
4
5

O
A

(3
2
,7
,2
,3

)
:
1
7

O
A

(6
4
,7
,2
,4

)
:
7

O
A

(9
6
,7
,2
,4

)
:
4

O
A

(2
5
6
,7
,2
,5

)
:
1
7

N
s
p

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

9
9
7
.8

%
:

4
4

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

S
N
s
p

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

9
9
7
.8

%
:

4
4

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

C
F
V

1
0
0
.0

%
:

1
0

8
8
.9

%
:

8
8
2
.2

%
:

3
7

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
7
5
.0

%
:

3
1
0
0
.0

%
:

1
7

G
W
L
P

9
0
.0

%
:

9
8
8
.9

%
:

8
6
0
.0

%
:

2
7

6
4
.7

%
:

1
1

8
5
.7

%
:

6
7
5
.0

%
:

3
9
4
.1

%
:

1
6

C
D

2 2
9
0
.0

%
:

9
8
8
.9

%
:

8
6
0
.0

%
:

2
7

6
4
.7

%
:

1
1

8
5
.7

%
:

6
7
5
.0

%
:

3
9
4
.1

%
:

1
6

K
u

9
0
.0

%
:

9
8
8
.9

%
:

8
6
0
.0

%
:

2
7

6
4
.7

%
:

1
1

8
5
.7

%
:

6
7
5
.0

%
:

3
9
4
.1

%
:

1
6

H
D

9
0
.0

%
:

9
1
0
0
.0

%
:

9
7
1
.1

%
:

3
2

6
4
.7

%
:

1
1

8
5
.7

%
:

6
7
5
.0

%
:

3
1
0
0
.0

%
:

1
7

P
N

s
p

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

9
1
0
0
.0

%
:

4
5

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

P
S
N

s
p

1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

9
1
0
0
.0

%
:

4
5

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

P
C
F
V

1
0
0
.0

%
:

1
0

8
8
.9

%
:

8
8
8
.9

%
:

4
0

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

P
G
W
L
P

1
0
0
.0

%
:

1
0

8
8
.9

%
:

8
8
8
.9

%
:

4
0

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

P
C
D

2 2
1
0
0
.0

%
:

1
0

8
8
.9

%
:

8
8
8
.9

%
:

4
0

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

P
K

u
1
0
0
.0

%
:

1
0

8
8
.9

%
:

8
8
8
.9

%
:

4
0

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

D
es
eq

1
1
0
0
.0

%
:

1
0

1
0
0
.0

%
:

9
9
3
.3

%
:

4
2

1
0
0
.0

%
:

1
7

1
0
0
.0

%
:

7
1
0
0
.0

%
:

4
1
0
0
.0

%
:

1
7

73

Chapter 4

Summary

In Chapter 2, we adopt the indicator function approach to tackle the problems

of design enumeration and isomorphism examination. For design enumeration,

we propose an assembly method which generates a design from its LOO projec-

tions. Based on a hierarchical structure existing between F∗(n, k − 1, 2, d) and

F∗(n, k, 2, d) for k = d+ 1, d+ 2, · · · , we can sequentially construct all indicator

functions by the assembly method. To save the computation time, we generalize

a method for isomorphism examination in Stufken and Tang (2007) to reduce

the number of indicator functions in F∗(n, k, 2, d). Although for k > d + 2, this

generalization does not allow us to fully classify non-isomorphic OAs, it is still an

efficient method to discard most isomorphic indicator functions in F∗(n, k, 2, d).

We also propose a new method for isomorphism examination that utilizes some

projection properties such as the projective index set. By applying these meth-

ods, we can efficiently enumerate all non-isomorphic designs for many cases.

In the assembly method, we currently consider all possible combinations

of indicator functions in F∗(n, k − 1, 2, d) to generate designs in F∗(n, k, 2, d).

However, because there exist some constraints between the coefficients of LOO

projections, many combinations cannot form an incomplete indicator function.

One of our future work is to identify these constraints so that we can further re-

74

duce the computation by quickly eliminating combinations that do not satisfy the

constraints. In Chapter 2, we use two methods, one based on group structure and

the other based on projective index set and |bT |, to distinguish non-isomorphic

designs. The two methods are only efficient for small designs. When the run

size or number of factors is large, their performances get worse, i.e., many non-

isomorphic designs cannot be distinguished by the two methods.

In Chapter 3, we adopt the counting vector approach, which is different from

the conventional tools used to study designs, to characterize the fractional facto-

rial designs. Because the components in the counting vector are ranked in Yates

order, we obtain the relationship between the counting vectors of isomorphic de-

signs. The effects of sign switch, column and row permutations on design matrix

are corresponding to the matrix transformation on counting vectors. We obtain

some sufficient and necessary conditions for counting vectors to be isomorphic,

which offer a theoretical basis for the split-N method. We also develop an alter-

native method which uses suffix’s operation to quickly obtain the counting vector

from another isomorphic design.

In the split-N method, we split the counting vector according to the signs in

each column of the model matrix. We find that any sign switch, column and row

permutations working on the designs can be regarded as the permutation of the

split-N vectors. We therefore propose the split-N matrix, which is invariant to

the sign switch column and row permutations. The split-N matrix is a powerful

measure for the isomorphism examination. Because the measures CFV , GWLP ,

CD2
2, and Ku are functions of split-N matrix, our method outperform the others

as an initial screening method for isomorphism examination. From some exam-

ples in Section 3.4, we observe that the classification power of Nsp is much higher

than the others in many cases. Although there does not exist a functional rela-

tionship between Nsp and HD, most cases in Example 8 show that Nsp is more

75

efficient than HD.

We also find that the projection technique developed for isomorphism ex-

amination can usually improve the classification efficiency. With projection,

some measures can even enhance their examination efficiency for about 50% (see

OA(32, 5, 2, 2) in Example 8). From the examples in Section 3.4, we can find

that among the methods with projection, our method PNsp have much better

performance for isomorphism examination. Unfortunately, because in the case of

OA(20, 7, 2, 2), the efficiency of PNsp can only reach 98.7% (468/474), it is not a

complete classification method.

There are some issues we would like to point out in the end of this dis-

sertation. When the run size of the designs n becomes large, the dimension of

the hamming distance matrix, (n2)× (n2), increases quickly so that we need more

computer memory to store the matrix of HD and have to spend more time on

the comparison work. The dimension of split-N matrix, 2k × (2k − 1), is not af-

fected by n. Therefore, when n is very large, split-N matrix seems to be a better

method for isomorphism examination. However, the dimension of split-N matrix

would dramatically increase when the number of factors k becomes large. Under

such a situation, HD becomes a better choice for isomorphism examination be-

cause the dimension of HD is not affected by k. Some simplified methods based

on split-N matrix proposed in Section 3.3.4 can also be considered when k is large.

76

Bibliography

[1] Chen, J. and Lin, D. K. J. (1991). On the identity of 2k−p designs. Journal

of Statistical Planning and Inference, 28, 95-98.

[2] Chen, J., Sun, D. X. and Wu, C. F. J. (1993). A catalogue of two-level

and three-level fractional factorial designs with small runs. International

Statistical Review, 61, 131-145.

[3] Cheng, S. W. and Ye, K. Q. (2004). Geometric isomorphism and minimum

aberration for factorial designs with quantitative factors. Annals of Statistics,

32, 2168-2185.

[4] Clark, J. B. and Dean, A. M. (2001). Equivalence of fractional factorial

designs. Statistica Sinica, 11, 537-547.

[5] Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aber-

ration criteria for Plackett-Burman and other nonregular factorial designs.

Statistica Sinica, 9, 1071-1082.

[6] Draper, N. R. and Mitchell, T. J. (1968). Construction of the set of 256-run

designs of resolution ≥ 5 and the set of even 512-run designs of resolution

≥ 6 with special reference to the unique saturated designs. Annals of Math-

ematical Statistics, 39, 246-255.

[7] Draper, N. R. and Mitchell, T. J. (1970). Construction of a set of 512-run

designs of resolution ≥ 5 and the set of even 1024-run designs of resolution

≥ 6. Annals of Mathematical Statistics, 41, 876-887.

77

[8] Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of two-

level factorial fractions. Journal of Statistical Planning and Inference, 87,

149-172.

[9] Fujii, Y., Namikawa, T. and Yamamoto, S. (1989). Classification of two-

symbol orthogonal arrays of strength t, t + 3 constraints and index 4, II.

SUT Journal of Mathematics 25, 161-177.

[10] Hedayat, A. S., Seiden, E. and Stufken, J. (1997) On the maximum number

of factors and the enumeration of 3-symbol orthogonal arrays of strength 3

and index 2. Journal of Statistical Planning and Inference, 58, 43-63.

[11] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999) Orthogonal Arrays:

Theory and Applications. Springer, New York.

[12] Katsaounis, T. I. and Dean, A. M. (2008). A survey and evaluation of meth-

ods for determination of combinatorial equivalence of factorial designs. Jour-

nal of Statistical Planning and Inference, 138, 245-258.

[13] Lam, C. W. H. and Tonchev, V. D. (1996). Classification of affine resolvable

2-(27,9,4) designs. Journal of Statistical Planning and Inference, 56, 187-202.

[14] Ma, C. X., Fang, K. T. and Lin, D. K. J. (2001). On the isomorphism of

fractional factorial designs. Journal of Complexity, 17, 86-97.

[15] Seiden, E. and Zemach, R. (1966). On orthogonal arrays. Annals of Mathe-

matical Statistics, 37, 1355-1370.

[16] Stufken, J. and Tang, B. (2007). Complete enumeration of two-level orthog-

onal arrays of strength d with d + 2 constraints. Annals of Statistics, 35,

793-814.

[17] Sun, D. X., Li, W. and Ye, K. Q. (2002). An algorithm for sequentially con-

structing non-isomorphic orthogonal designs and its applications. Technical

78

Report, Department of Applied Mathematics and Statistics, State University

of New York at Stony Brook, SUNYSB-AMS-01-13.

[18] Tang, B. (2001). Theory of J-characteristic for fractional factorial designs

and projection justification of minimum G2-aberration. Biometrika, 88, 401-

407.

[19] Tang, B. and Deng, L. Y. (1999). Minimum G2-aberration for nonregular

fractional factorial designs. Annals of Statistics, 27, 1914-1926.

[20] Xu, H. (2003). Minimum moment aberration for nonregular designs and

supersaturated designs. Statistica Sinica, 13, 691-708.

[21] Xu, H. (2005). A catalogue of three-level regular fractional factorial designs.

Metrika, 62, 259-281.

[22] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992a). Classification of

two-symbol orthogonal arrays of strength 2, size 16, 15 (maximal) constraints

and index 4. SUT Journal of Mathematics, 28, 47-59.

[23] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992b). Classifica-

tion of two-symbol orthogonal arrays of strength 2, size 20, 19 (maximal)

constraints. SUT Journal of Mathematics, 28, 191-209.

[24] Ye, K. Q. (2003). Indicator function and its application in two-level factorial

designs. Annals of Statistics, 31, 984-994.

[25] Yumiba, H., Hyodo, Y. and Yamamoto, S. (1997). Classification of two-

symbol orthogonal arrays of size 24, strength 2, 6 constraints and index

6 derivable from saturated orthogonal arrays having 23 constraints. SUT

Journal of Mathematics, 33, 47-63.

79

	封面-長鋆.pdf
	中文摘要new.pdf
	誌謝辭.pdf
	new080215.pdf

