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Abstract

Design enumeration and isomorphism examination are two difficult tasks in the
study of experimental design. The two tasks are different but often related to
each other. Design enumeration is concerned with the complete generation of
certain types of designs, such as regular designs or orthogonal arrays. Isomor-
phism examination, on the other hand, compares whether two designs have the
same structure subject to some row and column operations. During the process
of design enumeration, it is often required to perform isomorphism examination
at some stage to reduce the possible redundant calculation. This dissertation
includes two main parts. In the first part, we propose an assembly method based
on the indicator function and ‘the projection to enumerate all non-isomorphic
two-level designs. The assembly method allows-us to generate all designs sequen-
tially in a hierarchical structure. We present an algorithm based on the assembly
method and generate a complete catalogue of non-isomorphic designs for some
cases. In the second part, we develop an initial screening method based on the
counting vector for isomorphism examination. We prove that the method pro-
vides a more efficient examination than some methods proposed in other articles.

The technique of projection is also applied to improve the examination efficiency.
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Chapter 1

Introduction

Design enumeration and isomorphism examination are two difficult and time-
consuming tasks in the study of experimental design. The two tasks are different
but often related to each other. Design enumeration is concerned with the com-
plete generation of certain types of ‘designs;:such as regular designs or orthogonal
arrays. Isomorphism examination, on the other hand, compares whether two de-
signs have the same structure subject to some row and column permutations and
level exchange. During the process of design enumeration, it is often required to
perform isomorphism examination at some stage to reduce the possible redundant
calculation. In practice, design enumeration and isomorphism examination are
also important issues in the search of optimal designs, such as minimum aberra-
tion designs. Since isomorphic designs share the same statistical properties, it is
enough to choose one design matrix to represent the whole group of isomorphic
designs. It can significantly reduce the computation for finding optimal designs
by only searching among these chosen designs. If a complete catalogue of all
non-isomorphic designs is not available, we may get a design that is not globally
optimal. Therefore, design enumeration and isomorphism examination play im-

portant roles in the exploration of optimal designs.

In Chapter 2, we study the methods about the design enumeration. For the



regular design, which can be characterized in terms of a group structure, the
complete enumeration can be achieved by considering all possible combinations
of group generators. However, for the non-regular designs, the task of design enu-
meration becomes much more difficult because the group structure is no longer
available. To tackle this problem, we employ the indicator function approach.
The indicator function is a polynomial representative of a design matrix and can
be applied on designs with or without a group structure. In addition, we employ
the technique of projection to construct all possible designs. Based on the indi-
cator function and projection technique, we propose an assembly method which
allows us to generate the design by assembling the indicator functions of the
projections. We find that there exists a hierarchical structure between the pro-
jections and the designs generated from them. This hierarchical structure makes
it possible to sequentially construct all designs through the assembly method. By
applying these methods, we can efficiently enumerate all non-isomorphic designs

for many cases.

The projection index set is an accompaniment naturally appeared in the as-
sembled method. We utilize it to perform an initial isomorphism examination for
the designs constructed by the assembly method in Chapter 2 to save computa-
tion time. However, when the run size and the number of factors are lager, the
isomorphism examination based on the projective index set becomes inefficient.

It then calls for the development of better methods for isomorphism examination.

In Chapter 3, we propose an innovative method that can significantly im-
prove the efficiency of the isomorphism examination. In this chapter, we study the
relationship between two isomorphism designs in terms of their counting vectors,
whose components represent the number of the replicates of the experimental
runs. We find that the operations of sign switch, column and row permutations

on the design matrix are related to the rearrangement of components of the count-



ing vector. Some sufficient and necessary conditions for two counting vectors to
be isomorphic are therefore developed. The conditions offer us a theoretical basis
to present an isomorphism examination measure, called the split-N matriz. The
split-N matrix is invariant to the sign switch, column and row permutations so
that it can be a measure for the isomorphism examination. We also find that
some existing measures for isomorphism examination can be expressed as a func-
tion of the split-N matrix. In other words, non-isomorphic designs that can be
distinguished by those measures can be classified by the split-N matrix, but not
the other way around. That is, split-N matrix has higher classification efficiency
than those measures. The technique of projection is also applied in the examina-
tion method based on the split-N matrix, which greatly improves the examination
efficiency. Some simplified methods are proposed for the designs with large num-
ber of factors. They may have lower efficiency than the split-N matrix but can
greatly reduce the computation time and the storage memory when the number

of factors is large.



Chapter 2

Design enumeration through

projection

2.1 Introduction

Early works on design enumeration focused on regular designs. Because regular
designs possess a group structure,. its enumeration can be more easily imple-
mented by considering all possible combinations of group generators. For a 2¥—™
regular design, the number of its possible combinations of group generators is less
than (2;6,;1). Although the number could be large for designs with larger run sizes
and more factors, we at least know how to construct all designs in the case of
regular designs. For non-regular designs, the task of design enumeration becomes
much more difficult because the group structure is no longer available. Recently,
a new mathematical framework for design theory called indicator function was
developed for non-regular designs. An indicator function is a polynomial repre-
sentative of a design matrix and it can be applied on designs with or without a
group structure. Through indicator function approach, the enumeration of non-

regular designs can be translated into a problem of finding all coefficients of a

polynomial that can constitute an indicator function.



We denote by OA(n, k, s,d) an n x k matrix which can represent an orthogo-
nal array with n runs, k factors each with s levels, and strength d. The run size n
of an OA of strength d must be a multiple of s?. Two OAs are called isomorphic
if one can be obtained from the other by row (run) permutation, column (factor)
permutation and level exchange (or sign switch when s = 2). To use the defini-
tion to check whether two OA(n,k,s,d)’s are isomorphic, we must compare at
most n!k!(s!)* design matrices. For instance, it requires 16!15!121% ~ 8.97 x 10%
comparisons for two non-isomorphic OA(16,15,2,2)’s. The isomorphism exami-
nation of two designs based on the original definition is very time consuming when
the run size or the number of factors is large. The indicator function approach
is also useful in dealing with this issue. For example, suppose that design D’ is
derived from design D only through row permutation. Their indicator functions
are identical. This property makes it easier to discuss the isomorphism of designs

in terms of their indicator functions:

In this chapter, we propose 'a method to.enumerate non-isomorphic two-level
designs. The method includes two main parts. The first part is a projection
approach to construct all indicator functions. Based on the relationship existing
among the projections of a design, we propose an assembly method to sequen-
tially generate indicator functions in a hierarchical order. The second part is an

isomorphism examination that utilizes some projection properties.

The remainder of this chapter is organized as follows. Section 2.2 reviews
some works on the subjects of isomorphism examination and design enumeration.
Indicator function is also introduced in this section. Section 2.3 introduces the
assembly method and a hierarchical structure for sequential generation of designs.
Section 2.4 provides two methods for isomorphism examination. Section 2.5 gives
an algorithm which is developed based on materials in Section 2.3 and Section

2.4. Some computational results are also given in this section.



2.2 Review

We review some works on design enumeration and isomorphic examination in this
section. A recently developed mathematic framework for design theory, indicator
function, and its application on design enumeration and isomorphism examina-

tion are also introduced.

2.2.1 Design enumeration and isomorphic examination

Most works of design enumeration in literature were accomplished case by case.
For example, Seiden and Zemach (1966) gave a complete enumeration of O A(n, d+
1,2, d). Fujii, Namikawa and Yamamoto (1989) completely enumerated O A(2¢+1, d+
2,2,d) and OA(29+1 d+3,2,d). Chen,Sun aid Wu (1993) explored the algebraic
structure of regular designs and"gave-a collection of regular designs with 16, 32
and 64 runs through an exhaustive computer search. Lam and Tonchev (1996)
completely enumerated all OA(27,12,3,2). Hedayat, Seiden and Stufken (1997)
enumerated all OA(54,5,3,3). Yumiba, Hyodo and Yamamoto (1997) classi-
fied all OA(24,6,2,2). Yamamoto, Fujii, Hyodo and Yumiba (1992a, 1992b)
and Hedayat, Sloane and Stufken (1999) enumerated all OA(n,n — 1,2,2)’s for
n =4,8,12,16,20,24. Sun, Li and Ye (2002) also succeeded in enumerating non-
isomorphic OA(n, k,2,2)’s for n = 12,16, 20 and arbitrary k through a thorough
computer search. Xu (2005) gave a complete catalogue of three-level regular frac-
tional factorial designs with 27, 81, 243 and 279 runs. The method of enumerating
non-isomorphic OA(n,d+ 2,2, d) was demonstrated by Stufken and Tang (2007).
They applied the properties of J-characteristic to solve an equation under some

constraints, of which each solution represents a class of isomorphic designs.



Some isomorphism examination methods were proposed for both regular and
non-regular designs recently. Clark and Dean (2001) introduced the Hamming
distance, which records the number of differences between two rows in a design.
Through Hamming distance, one can distinguish two designs if they are non-
isomorphic or find their permutation relationship if they are isomorphic. Clark
and Dean (2001) also provided the necessary and sufficient conditions for iso-
morphism of two-level fractional factorial designs. Ma, Fang and Lin (2001)
combined Hamming distance and the measures of uniformity, called C'D3, to de-
velop a p-dimensional C D3 projection frequency, which records the C' D3-values of
all p-factor projections of a design. According to the projection frequency, some
non-isomorphic designs can be distinguished. Although they conjectured that it
is a sufficient condition for isomorphism, it has been shown that this method fails
for some cases. Xu (2005) introduced the coding theory approach for three-level
regular fractional factorial designs and defined the power moments, K, by calcu-
lating the number of coincidences-between two rows. Similar to Ma, Fang and Lin
(2001), Xu (2005) obtained p-dimensional.- 1<, projection frequency by projecting
a design to arbitrary p factors. Whenever two designs have different p-dimensional

K, projection frequency for some u and p, they must be non-isomorphic.

2.2.2 Indicator function and .J-characteristics

Indicator function was first defined in Fontana, Pistone and Rogantin (2000) for
studying two-level fractional factorial designs without replicates. Ye (2003) ex-
tended it to two-level fractional factorial designs with replicates. Recently, Cheng
and Ye (2004) generalized it to designs with more than two levels. Indicator func-
tion for two-level designs can be briefly described as follows. Let G be a 2F full
factorial design with levels labeled by —1 and 1. The design points of G can be
regarded as the solutions of the polynomial system 2? — 1 = 0,i = 1,2,--- , k.

Let 7 = {1,2,--- ,k} denote the collection of factors of G. For any non-empty



subset t of 7, define
Ci(x) = H T
jet
and Cy(x) = 1 for x € G. Let D be a k-factor fractional factorial design (i.e.,
D C G), in which a design point in G is allowed to appear more than once.
The indicator function of D, denoted by Fp(x), is defined to be the number of
appearance of x in D for every x € G. It was shown in Ye (2003) that Fp(x) can

be expressed as:
> b, (2.1)
tCT

where

by =2"" Z Cs. (2.2)

xeD
We denote the term with the highest order in Fp(x) by Cr and the coefficient of

Ct by br. The C7 is the only term in Fp-with order k. Every indicator function

can be expressed as a polynomial in which every term is of the form xfl ----- a:‘,fk,
where dy, -+, dy, € {0,1}. In the following context, when we refer to polynomials,

we mean polynomials of such form.

Another theoretical structure parallel to indicator function is J-characteristics,
which were first introduced in Deng and Tang (1999) and Tang and Deng (1999)
but explicitly defined in Tang (2001). J-characteristics are similar to the coeffi-
cients in an indicator function, i.e., by’s. Although J-characteristics do not utilize
the polynomial framework as indicator function approach does, they play very
similar roles in design theory. Stufken and Tang (2007) applied J-characteristics
to enumerate all non-isomorphic OA(n, k, 2, d) for the case k = d + 2. From the
viewpoint of indicator function, their method can be described as follows. The
indicator function of an OA of strength d has the property that b, = n/2* and
by = 0 for all nonempty t with ||t|| < d, where |[t|| is the number of elements
in t. In the indicator function of an OA(n,k = d + 2,2,d), there are k t’s with
|t]] = d+ 1 and only one t with ||t|| = d+ 2. We denote the by’s with |[t]| > d+1

10



by b, bey, -+, by, b,y where t, = T —{k+1—p}forp=1,--- [kand tj ., =7.
Except by, the bg,, -+, by, ., are the only coefficients that can be non-zero in the
indicator function of an OA(n,k = d + 2,2,d). Stufken and Tang (2007) proved
that:

1. when £k is odd, every class of isomorphic OA(n,k = d+ 2,2, d)’s contains a

unique array whose bg,’s satisfy

btl S e S btk,1 < _’btk‘7 btk+1 S 07 (23)

2. when k is even, every class of isomorphic OA(n, k = d + 2,2,d)’s contains

a unique array whose bt ,’s satisfy either

btl <---< btk—l < _|btk+1| (24)
or
bt1 S ' S btk_1 S '—lbtk|’ btk+1 < _|btk|' (25)
By substituting the design point 1= (1,-++,1) into the indicator function of an

OA(n,k =d+2,2,d), we can get
by + be, + by, + -+ by, = w, (2.6)

where w is the number of appearance of the design point 1, which must be a
non-negative integer. The complete set of non-isomorphic OA(n, k = d+2,2,d)’s
can be obtained by solving equation (2.6) under constraint (2.3) for an odd & or

under constraint either (2.4) or (2.5) for an even k.

The method in Stufken and Tang (2007) simultaneously achieves two ob-
jectives: complete enumeration of designs and isomorphism examination. First,
because the solutions to equation (2.6) contain all possible combinations of coeffi-

cients, the method can construct all designs. Second, the constraints (2.3), (2.4),

11



or (2.5) make it possible that every class of isomorphic designs only appears once
in the search of the solutions. In other words, each solution of (2.6) under the
constraints must represent a design and the solutions of non-isomorphic designs
must be different. Hence, isomorphism examination becomes unnecessary, which

saves a lot of computation.

Unfortunately, the generalization of this method to the cases k& > d + 2
is very difficult because of three reasons. First, when k > d + 2, the number
of the coefficients that could be non-zero increases dramatically. For instance,
when d = 2 and k = d + 4, we would need to handle (§) + (§) + (2) + (§) = 42
coefficients. It means that there would be 42 indeterminate terms in an equation
like (2.6). Second, some solutions of an equation like (2.6) do not represent a
design. Third, when k£ > d + 2, the relationship among the non-zero coefficients
becomes much more complicated. The constraints (2.3), (2.4), or (2.5) are not
enough to describe the relationship sothat we may generate more solutions than
required. In other words, because some soliitions are corresponding to designs
that are isomorphic, an isomorphism-examination is inevitable. In view of these
problems, we take a different approach based on projection to tackle the problem
of design enumeration and isomorphism examination for £ > d + 2, which will be

presented in later sections.

2.3 Design enumeration

We will present in this section an innovative method based on projection for com-
plete design enumeration. Let D be an n x k design matrix and d; be the jth
column of D. Let D_jy be the n x (k — 1) design matrix obtained by excluding
d; from D. We refer to D(_;) as a leave-one-out (LOO) projection of D. The
Figure 2.1 presents an example of a 3-factor design A and its three LOO pro-
jections. Suppose that Fp(x) = >, b:C¢ is the indicator function of D. By

12



Figure 2.1: The 3-factor design A and its three LOO projections A1), A2
and .,4(_3).

Theorem 1 in Ye (2003), the indicator function of D(_; is

Fp ) (T1, -+ 521y @rs iV )= Z 2, C, (2.7)
tCT(—)

where 7(_;) = T — {j}. That is; the'indicator function of D(_j) is obtained from
Fp by doubling the coefficients and eliminating the terms whose suffixes include
factor j. Obviously, given Fp, we can obtain & LOO indicator functions Fp_j,
j = 1,---,k, and each of them represents a (k — 1)-factor fractional factorial
design. Because D(_; is a projection of D, the strength of D(_j) is at least as
high as the strength of D. Let F*(n,k,2,d) be the collection of all different
indicator functions of OA(n,k,2,d)’s. Suppose that Fp is an indicator func-

tion in F*(n,k,2,d). Its Fp

5’8 must belong to F*(n,k —1,2,d). If we have

F*(n,k—1,2,d), then by applying an assembly method given in Section 2.3.2 for
all possible combinations of the indicator functions in F*(n,k — 1,2,d), we can
construct F*(n, k,2,d). This hierarchical structure makes it possible to sequen-

tially generate all indicator functions.

13



2.3.1 Incomplete indicator function

A polynomial is called an incomplete indicator function if it is obtained from an
indicator function by deleting the highest-order term, b7C7. Indicator functions
of different designs may be corresponding to an identical incomplete indicator
function because there exist indicator functions whose coefficients are identical
except br. Note that not every polynomial with b7 = 0 is an incomplete indica-
tor function. A necessary and sufficient condition for a polynomial with b7 = 0
to be an incomplete indicator function is that there must exist at least one b4

such that the sum of the polynomial and 0;;Cr is a non-negative integer function.

Let F'(x) be a polynomial with b7 = 0. Let |w] be the largest integer that
is not more than w and [w]| be the smallest integer that is not less than w. Let

y = min F'(x) and z = min F'(x). Define
xeg 8.b. Cr(x)=1 x€G8. 5 Cr(x)=—1

[F'(x)] = F'{x):; +for x€ G such that Cr(x) =1

d(F'(x)) =
(F'(x)) F'(x) — |[E"(X) s for x € G such that Cr(x) = —1.

The following theorem offers the necessary and sufficient condition for F’(x) to

be an incomplete indicator function.

Theorem 1. Let F'(x) be a polynomial with by = 0. The F'(x) is an incomplete
indicator function if and only if

(a) d(F'(x)) is constant for all x € G, and
(b)y>—=z.

Proof. Suppose that F'(x) is an incomplete indicator function. There exists an

indicator function F'(x) and a bz such that

F'(x) 4+ br = F'(x) 4+ (br — |br]) + |br], forxeGst. Cr(x)=1

F(x) =
F'(x) — by = F'(x) — (b — |br|) — |br]|, forxeGst. Cr(x)=—1.

14



It can be written as

(F(x) — |br]) — F'(x) = [F'(x)| — F'(x), forxeGst Or(x)=1
F'(x) — (F(x)+ |br]) = F'(x) — | F'(x)], forxe€Gst. Cr(x)=—1.

br—|br| =

Therefore, d(F’'(x)) = by — |br |, which is constant for all x € G. The condition

(a) is proved. Because F'(x) is an indicator function, we have

F'(x)+br >0, forxeGst Cr(x)=1
F'(x) —br >0, forxegGst Cr(x)=-1.

F(x) =

Therefore, we have y+b7 > 0 and z—by > 0, i.e., y > —by > —z. The condition
(b) follows. Conversely, if y < 0, then z — (—y) > 0 by (b). Let by = —y. Then,
y+br =0and z — by > 0. If 2 <0, then y + 2z > 0 by (b). Let by = z.
Then, z— by = 0and y+byr > 0. If y > 0and z > 0, let by = 2z . Then
z—br = 0and y+br > 0. Sincey =min st oy F'(X) y+0r 20
ensures that F’'(x) + by > 0 for all x € G such that Cr(x) = 1. Similarly, since
z=mil, g st o= I (%), 27 07,20 ensures that F'(x) — by > 0 for all
x € G such that Cr(x) = —1.-Hence, under the condition (b), there must exist a
br such that F'(x)+ bz > 0 for those x-such that C7(x) = Is and F'(x)—br > 0
for those x such that Cr(x) = —1s. By (a), if y + by or z — bz is an integer, it
is clear that the F'(x) 4 by are integers for those x such that Cr(x) = 1s and
F'(x) — br are integers for those x such that Cr(x) = —1s. Hence, if (a) and (b)
hold, there must exist a by such that F'(x) 4+ b7Cr is an indicator function, i.e.,

F'(x) is an incomplete indicator function. O

For instance, suppose that 7 = {1,2}. The polynomial F'(x) = 3/4 —
2/4C4 (x) — 5/4Cy(x) is a polynomial with b7 = 0 but not an incomplete indica~
tor function because for x = (1,1), d(F'(x)) = [F'(x)] - F'(x) = —-1—(=1) =0
but for x = (1, —1), d(F'(x)) = F'(x) — | F'(x)] = 6/4 — 1 = 2/4, which violates
the condition (a) in Theorem 1. For an incomplete indicator function, the follow-

ing theorem gives the possible values of b7’s with which the incomplete indicator

15



function can become an indicator function.

Theorem 2. Let y and z be as defined in Theorem 1. Suppose that F'(x) is an
incomplete indicator function. A by can be used to form an indicator function

F(x) = F'(x) + brC7 if and only if br is a value in {—y,—y+1,--- 2 —1,z}.

Proof. First, let us prove that z — (—y) is a non-negative integer. Suppose that
there exist x; and x» such that y = F'(xy) and z = F'(x3). Because F’(x)
is an incomplete indicator function, d(F’(x;)) = d(F'(x2)) by Theorem 1 (a).

Therefore,

2] + (2= [2]) + Tyl = ([y] —v)
|2] 4+ d(F'(x2)) + [y] — d(F'(x1))
=[z] + [y],

which is an integer. By Theorem 1-(b), it.is clear that |z] + [y] > 0. Any b7

z—(~y)

such that both y+ b7 and z — by are non-negative integers can be used to form an
indicator function. Hence, by can be and must be any value in the intersection
of {—y,—y+1,—y+2,---}and {z,2 =1;2—2,---}. Because z — (—y) is a
non-negative integer, we have {—y,—y+1,-y+2,--- }({z,2—1,2—2,--- } =
{(—y,—y+1,---,2—1,z}. O

For instance, let 7 = {1,2} and F'(x) = 7/4 — 1/4C,(x) + 1/4C(x). It is
clear that d(F'(x)) = 1/4 for all x € G and y > —z where y = 7/4 and z = 5/4.
According to Theorem 1, F’'(x) is an incomplete indicator function. To obtain
an indicator function from F’(x), the b5 could be chosen from the following val-
ues —7/4(= —y), —3/4, 1/4, 5/4(= z) by Theorem 2. The two theorems play
important roles in the assembly method that will be introduced in next section.
Theorem 1 will be applied to check whether an assembled polynomial is an in-
complete indicator function. If the assembled polynomial passes the Theorem 1,
the values of by given by Theorem 2 complement it to form an indicator func-

tion. For the application of the two theorems, reader is referred to Example 1 in

16



Section 2.3.3.

2.3.2 Assembly method

The indicator function of a design can be built from the indicator functions of
its LOO projections as explained and illustrated below. Suppose that A is a

three-factor fractional factorial design and its indicator function is
Fa=0by+b.C1 4 0205 + b3C3 4 b12Chg + b13C13 + bagCos + b123Ch03.
Its three LOO indicator functions are
Fa_yy = 2by + 20202 + 20305 + 2b23C53,

FA(72) = 2b¢ + 2b101 2 2()303 + 2b13013,

and

FA(_g) - 2b¢ G 2b101 —|— 2b202 + 2b12012.

In any two LOO indicator functions, the coefficients with the same suffix must
be identical. Suppose that we only know the indicator functions of the three
LOO projections. To rebuild F4 by using Fa_yys Fa_, and Fa_,, we can first
divide coefficients of each LOO indicator function by two and then assign them
to the corresponding coefficients in F4. The reason of dividing by two is that

the coefficients in F4_ are twice of their corresponding coefficients in F4. The

)
relationship between F4 and its LOO indicator functions is given in Table 2.1.
The coefficients in each indicator function are listed in each row and the column
shows the relationship of the coefficients between indicator functions. Since none
of the LOO indicator functions contains the term b23C123, this assembly method
only allows us to construct an incomplete indicator function. By applying The-

orem 2 on the incomplete indicator function, we soon obtain suitable values for

b123 and successfully rebuild an F4. This method can be used for the designs with
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Table 2.1: The relationship between F4 and its LOO indicator functions.

design | Cy | C1 Cy C3| Cia Ciz Oy | Cias
Fy by | br by by | bz bz bag | bias
%FA(_g) by | b1 bo b12

%FA(fz) by | by bs bi3

%FAH) by by bs bas

more factors. For those indicator functions with identical incomplete indicator
function, they would have the same LOO indicator functions. Therefore, it is
possible that we may obtain more than one indicator function from a group of

LOO indicator functions.

In general, we only have k (k— 1)-factor indicator functions and do not know
whether they are LOO projections of a #-factor indicator function. The assem-
bly method can be applied to check whether their combination can construct a
k-factor indicator function. The procedureis given as follows. Suppose that Fp
is a k-factor indicator function in F*(n;k,2,d) and its coefficients are unknown.
We can first select one of the (k—1)-factor indicator functions in F*(n, k—1,2,d)
and assign it to Fp_,, ie., replace the factor labels 1,2,--- ,k — 1 in the chosen
indicator function by 2, --- , k respectively, divide its coefficients by two, and set
them to the corresponding coefficients in Fp. Next, select one of the (k — 1)-
factor indicator functions in F*(n,k —1,2,d) and assign it to Fp_, ., i.e., replace
its factor labels 1,2,--- ,k—1 by 1,3,--- , k respectively. The indicator function
for Fp _, could be the one we have selected for Fp_,,, i.e., repeated selection is
allowed. Because the coefficients in Fp with suffixes not including 1 have already
been determined by Fp_, , the assignment of Fp _, must obey the predetermined
condition of the coefficients. The procedure can be repeated sequentially to as-

sign the other LOO indicator functions until Fp_, . Finally, a polynomial with
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unknown b7 is assembled from & (k — 1)-factor indicator functions. We can check
whether the polynomial is an incomplete indicator function by using Theorem 1,
and determine the value of by from Theorem 2 if the polynomial passes the ex-

amination of Theorem 1.

2.3.3 An example

Here we give a simple but clear example to demonstrate the assembly method.

Example 1. Suppose that we have chosen three two-factor indicator functions

from F*(6,3,2,0),

3 1 1 1
Fy, = 5 + 501 - 502 - 5012,
3 1 1 1
Fy, = o 501 = 502 - 5012,
and
3 phussb 1 1
Fa, = 9z §C1 i 502 =+ 5012-

Our purpose is to use them to generate a three-factor indicator function, say
Fa=0by+b,C1 + 0205 + b3C3 + b12C12 + b13C13 + bagCas + b123C 23.

We can first assign Fla, to Fla_, by replacing factors label 1 and 2 in Fj, to 2

and 3, respectively. This assignment can be denoted by

3 1 1 1
FA1 = FA(_I) = 5 + 502 — 503 — 5023.

After dividing F Ay by two, setting its coefficients to the corresponding terms

in F 4, we obtain

3 1 1 1
Fy= 1 +0,C1 + ZC’Q - 103 + 012C12 + 013C13 — 1023 + b123C123.

For F Ay the predetermined coefficients by the assignment of F A, are by(= %)

and by(= —1) (see Table 2.1). Therefore, the two indicator functions, F4, and
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F,,, are eligible for the assignment of Fyu._,- We denote Fu, = Fa _, ascasel
and Fyu, = Fa _, as case 2; their corresponding F4’s are:

.1 1 _ 3 1 1 1
case 1: §FA1 = §FA(,2> =1 + 101—203 — 1013

3 1 1 1 1 1
Fp= 5 + ZCl + ZCQ — 103 + b12C12 — 1013 — 1023 + b123C193.
case 2: $Fa, = 3Fq , =2 —1C1—1C5 — 1y
3 1 1 1 1 1
Fa= 5 ZCI + 102 - 103 + b12C12 — 1013 — 1023 + b123C23.

Now, let us consider the last assignment for both cases. In case 1, the predeter-

mined coefficients for F Ay are

bo(= 2),bu(= 7). and bo(= 7). (2.8)

Because none of the coefficients in the Flu,, Fl4,, and F 4, can satisfy the condition
in (2.8), this assembly fails. In case 2, the predetermined coefficients are b, (= i—i)
bi(=—1), and by(= 1). The coefficients in F4, are eligible for the assignment of

Fy _, . Finally, we obtain

3 1 1
Fo=>-= —C5Y
A= 401+402

1
4
By letting bi23 = 0, we obtain a polynomial F;. The Table 2.2, which checks the

¥ 1 1
Cs+ 1012 77 1013 - 21023 + b123C123.

conditions in Theorem 1, confirms that F’; is an incomplete indicator function.
By Theorem 2, we soon obtain bjs3 = —1/4. Through the procedure, one three-
factor indicator function is successfully generated from three two-factor indicator
functions. Actually, this three-factor indicator function is corresponding to the

design matrix

1 1 -1
1 1 -1
-1 1 -1
-1 1 1
-1 -1 1
-1 -1 -1
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Table 2.2: Incomplete indicator function examination

r1 %2 w3 | Cioz | F4(x) || Condition examination

1 1 1 1 1/4 | (a). d(Fy(x))=3/4

111 -1 3/4 1| (b). y=min,cg g t. cppm=1 Falx) =1/4

1 -1 1 -1 -1/4 2 =MiNyg 5t Crox=—1 Fii(x)=-1/4
1 -1 1| 1| 5/4 y > (=2)

1 1 1| -1| 7/4
11 -1 1| 54

1 -1 -1 1| 1/4
1 -1 1| -1 34

2.3.4 Hierarchical structure

There exists a hierarchical structure between F*(n,k — 1,2,d) and F*(n,k, 2,
d), for k = d + 1,d + 2,---. This hierarchical structure makes it possible to
sequentially generate all indicator functions: Recall that indicator functions of
OA(n, k,2,d)’s have the property that.bs= n/2* and b, = 0 for all nonempty t
with ||t]] < d. Hence, F*(n,d,2,d) contains only one indicator function F'(x) =
n/2%. By applying the assembly method, we can generate F*(n,d + 1,2,d) as
shown below. Let F'(x) be an indicator function in F*(n,d+1,2,d). Then, F(x)

must be of the form:
n

+ b7 Cr, (2.9)

where 7 = {1,2,---,d + 1}. By Theorem 2, by can be any of the values
—5ie1, —5h7+1, -+, 5955 Because there are (n/29+1) by’s and F(x) = n/24t +
brCr and F(x) = n/2¢1 — b7 Cr are isomorphic, we can conclude that there ex-
ist [n/2%7! + 1/2] non-isomorphic designs in F*(n,d + 1,2,d). The procedure
can be repeated to sequentially generate F*(n,d + 2,2, d) from F*(n,d+1,2,d),
F*(n,d+3,2,d) from F*(n,d+2,2,d), and so on. The relationship between an Fp
in F*(n,d+2,2,d) and its LOO indicator functions is shown in Table 2.3. Notice
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Table 2.3: The relationship between Fp and its LOO indicator functions where
Fpisin F*(n,k =d+2,2,d).
design C¢ Cl2~--(k—1) 012~~-(k—2)k Czk Cl2---k

Fp | by | bioc(e—1)  bigee—2pk -+ Doy big..k

by by

*by's for 1 < ||t]| < d are omitted because they are equal to zero.

that none of the non-zero coefficients in these LOO indicator functions has the
same suffix except bg. This makes the assembly method easier to be implemented
because the later assigned LOOQ indicator functions do not have any restriction
on their coefficients imposed by the LOO indicator functions. For d = 2, the
relationship between Fp(x) in F*(n;d+3,2,d) and its LOO indicator functions
is as shown in Table 2.4. When k-2>/d +.3, these LOO indicator functions have

overlapped coefficients with each other.

Some issues should be highlighted here. Although all indicator functions in
F*(n, k,2,d) can be generated from F*(n, k—1, 2, d) by the assembly method, not
every indicator functions in F*(n,k — 1,2, d) can be obtained by projecting indi-
cator functions in F*(n, k, 2, d). For instance, F}(x) = 3/4—1/2C123 —1/2C124 —
1/2C134 — 1/2C534 + 1/2C1234 is the unique isomorphic design in F*(12,4,2,2),
but Fy(x) = 3/2 + 3/2C'23, which is an indicator function in F*(12, 3,2, 2), can-

not be obtained from F}(x) through projection.

The method in Stufken and Tang (2007) can be regarded as a special case of
our assembly method. Their method first obtains all possible bt’s for ||t|| = d+1
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Table 2.4: The relationship between Fp and its LOO indicator functions where
Fpisin F*(n,k =d+ 3,2,d).

design | Cy | Crag3 Crags Cizg Cazs Cras Cizs Cazs Cuas Coss Cags
Fp by | Drzs  biza biza bazs  bizs  bizs  bass  buas  bass  bass

%FD<,5> by | bras  biza  biza Doy

%F Dy | bs | bios bizs  bizs  bass

%F Dy | bo b124 bi2s bus  bass

sFp_y | bo b3y b13s b14s bsas

%F Dy | b bas4 bass boas  b3as

design | Ciass  Chass Chaas  Chisas Coasis | Classs

Fp | biaga  biags  bioss  bizas  basas | biosss
5Fp s | bizss

5Fp_., biass

5Fp s, bi2as

1
2Fp bi3as

1
b, bazas
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and ||t|| = d + 2. This step is equivalent to using Theorem 2 to obtain the bz for
the indicator functions in F*(n,d + 1,2,d) and F*(n,d + 2,2,d). Their method
then checks whether the combination of by’s satisfies some constraints. This step
is equivalent to constructing F*(n,d + 2,2,d) from F*(n,d + 1,2,d) by the as-

sembly method and checking the conditions in Theorem 1.

2.4 Isomorphism examination

Since isomorphic designs share the same statistical properties, we only need one
of them to represent a class of isomorphic designs. By reducing a class of isomor-
phic designs to one design, we can save a lot of calculation in design enumeration.
In this section, we present two methods for examining isomorphism and reducing

the number of designs in F*(n,k,2,d):

2.4.1 Method based on group structure

Let F(n,k,2,d) be a subsect of F*(n,k,2,d) such that every class of isomor-
phic designs in F*(n,k,2,d) only has one representative indicator function in
F(n,k,2,d). To reduce F*(n,k,2,d) to F(n,k,2,d) for the case k = d + 2,
Stufken and Tang (2007) developed some constraints on the coefficients of indica-
tor functions as introduced in Section 2.2.2. We will show that these constraints
still hold for k& > d 4 2. Although for £ > d + 2, these constraints no longer
have the ability to fully reduce F*(n, k,2,d) to F(n, k,2,d), it is still an efficient
method to use the constraints to discard some isomorphic indicator functions in

F(n, k,2,d).

Let § = (d1,---, ;) where 6; = £1 be a vector acting on D = (dy,--- ,dy).

The ¢ is used to indicate whether the signs of the columns of D are switched.
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When ¢; = —1, the sign of column j is switched, and not switched if §; = 1. Let
D' be the design matrix obtained by applying § on D, i.e., D' = (d1dy, - - - , dpdy).
The coefficients of the indicator function of D’ are by = by for t C 7, where
0t = [];c¢ 6. Let us now pay attention on the d¢’s with [t > k& — 1. Recall that
there exist k£ t’s with ||t|] = & — 1 and only one t with ||t|] = k. We again denote
the t’s with ||t|]| > k& — 1 by ty,te- -+, ty, tgr1, where t, = T \ {k + 1 — p} for
p=1,--- kandty; = 7. For asign switch indicator §, the d;’s with |[t| > k—1
is denoted by 6* = (04, - , ¢, d,,,). Since there are 2* different ¢’s, we have 2
different §*’s. If we regard each * as a run, then the 2% different §*’s form a half
fractional factorial design, denoted by A*. We regard the jth column of A* as a
factor and label the factor by j. Notice that when k is odd, A* is a half fractional
factorial design with the defining relation I = 12---k and when k is even, A*
is a half fractional factorial design with the defining relation [ = 12---k(k + 1).
When k is odd, let A’ be a design obtained from A* by deleting any of the first &
columns. Then A’ forms a full factorial design, i.e., its runs contain all possible
level combinations. Let Fp(x). be theindicator function of D. Denote the coef-
ficients with [[t| > & — 1 in Fp(x) by-bebey, - -« , by, by, - Suppose that |bg |
is the smallest absolute coefficient among all |b,|’s, where 1 < p < k. Because
A’ contains all level combinations, we can always find a run d; in A’ such that
bfcp = 0¢,bg, < 0 for p # p'. Because there exists a one-to-one correspondence
between the column permutation of D and the order of {t;,ts, - ,t;}, we can
always find a column permutation to b; ’s in an ascending order. This result is

summarized in the following proposition.

Proposition 1. When k is odd, every class of isomorphic designs contains a

design whose indicator function satisfies

by, <o <y, < —|be, |, beyy, <O. (2.10)

1
According to Proposition 1, we only need to preserve the designs whose indi-
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cator functions satisfy (2.10) and discard the others. Proposition 1 ensures that
we will preserve at least one design for each class of isomorphic designs. The

similar result for even k is given below.

When k is even, A* satisfies [ = 12--- k(k + 1). Deleting any column of A*
gives us a full factorial design. By a similar argument as for odd £, we obtain the

following proposition.

Proposition 2. When k is even, every class of isomorphic designs contains a

design whose indicator function satisfies either

btl <---< btk—l < _|btk+1| (211)

or

by, <--- < bt}cfl S _lbtk‘7 btk+1 < _’btk" (2'12)

2.4.2 Projective index set

We can assign an index to each non-isomorphic designs in F(n,k — 1,2,d). We
refer to the index as isomorphism index. An OA(n, k,2,d) has k LOO projections
and each LOO projection has its own isomorphism index. The collection of the
isomorphism indices of the £ LOO projections can be used to examine isomor-

phism. The collection is referred to as projective index set.

Theorem 3. If D and D’ are two isomorphic designs, then their projective index

sets must be identical.
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Proof. Let D = (dy,dg, - ,dg) be an OA(n, k,2,d). Let R be an n X n matrix
with elements 0 or 1, where 1 appears exactly one time in each row and each
column of R. Any row permutation of D is corresponding to an R and can be
denoted by RD. Let U : {1,2,--- [k} — {1,2,---  k} be a function representing
column permutation. Let S = (4;;) be a k x k diagonal matrix where 6;; = —1
when the sign of column j is switched, and 6;; = 1 otherwise. If D and D’ are

isomorphic, there must exist an R, an S and a ¥ such that
D' =Rldyq),du), -, dww)]S.

Let S(_;) be a (k — 1) x (k — 1) matrix obtained by deleting the jth column and
the jth row of S. Then the LOO projections of D and D’ have the relation

D j = RDw()Swi, §=1,2,--- k. (2.13)

When D and D’ are isomorphie, for each LOQ projection of D, there must exist

a corresponding isomorphic LOO- projection of D'. n

Note that the converse of Theorem 3 is not true in general. For instance,
Fp(x) =5/2 —1/2C1935 — 1/2C194 — 1/2C134 — 1/2C934 + 1/2C1234 and Fp(x) =
5/2—=1/2C193 —1/2C 194 — 1/2C134 — 1/2C534 — 1/2C234 have the identical projec-
tive index set, but D and D’ are non-isomorphic. By Theorem 3, we know that
any two designs with different projective index sets must be non-isomorphic. This
property is useful to divide F*(n,k,2,d) into several groups of non-isomorphic
designs. Moreover, if two k-factor designs have the same projective index set but
different |b7|, they must be non-isomorphic. We will use the projective index set

and |br| for isomorphism examination as presented in the next section.
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2.5 Algorithm and results

Based on the materials in Sections 2.3 and 2.4, we develop an algorithm to enu-
merate non-isomorphic designs. The hierarchical structure in our method allows
us to first generate F*(n,k,2,d) for k = d + 1 and then sequentially gener-
ate F*(n,k,2,d) for higher k by the assembly method. During the generation
process, we use the method given in Section 2.4.1 to discard some isomorphic de-
signs. The projective index set and |b7| are then applied to divide the generated
indicator functions into several non-isomorphic groups. Within each group, an
exhaustive examination based on the definition of isomorphism, i.e., all column
and row permutations and sign switches, is required. Recall that the examination
conditions given in Section 2.4.1 are different for odd and even k’s. Here we just

give the case for odd k. The case for even k is similar.

2.5.1 Algorithm

Suppose that F*(n,k — 1,2,d) is known. Let Fp be any indicator function in
F*(n,k,2,d) and its LOO indicator functions be Fp sy Fp_,y- Let br_

denote the highest order coefficient in Fp_ .

Step 1. Assign an indicator function in F*(n,k — 1,2, d) to Fp_,,- The highest
order coefficient of this indicator function should be non-positive by Propo-
sition 1 and it results in bT(,k) < 0. After dividing the coefficients of Fp
by two, assign them to the corresponding coefficients in Fp, and record the

isomorphism index of Fp _, .

Step 2. Sequentially assign the indicator function in F*(n,k —1,2,d) to Fp_
for j=k—1,k—2,---2. Each assignment must satisfy:

1. the coefficients with the same suffixes among Fp s Fp_oapys o Fp )

are consistent;
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2. b7y Sb7_yy S S0, <0

After dividing the coefficients by two, assign them to the corresponding
coefficients in Fp, and record the isomorphism index of each assignment

simultaneously.

Step 3. Assign an indicator function in F*(n,k —1,2,d) to Fp_, . This assign-

ment must satisfy:

1. the coefficients with the same suffixes among Fp_, , Fp ., Fp _,,

are consistent;

2. —|br_ | = br .

After dividing coefficients by two, assign them to the corresponding coeffi-

cients in Fp, and record the isomorphism index of Fp_,.

Step 4. An assembly polynomial is obtained if Steps 1 to 3 are successfully
performed. Examine whether the polynomial is an incomplete indicator
function by Theorem 1. If it passes, Theorem 1, obtain the values of by by
Theorem 2. By Proposition 1, we can only keep Fp with by < 0. If the
assembly polynomial does not pass Theorem 1, discard it and go back to

Step 1.

Step 5. Repeat Step 1 to Step 4 for all possible assignments to obtain a set
of indicator functions. Each indicator function in the set has a projective
index set. Group together the indicator functions with the same projective
index set and |br|. For the indicator functions in the same group, check

isomorphism by the definition.
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2.5.2 Some results

Using the algorithm given in Section 2.5.1, we completely enumerate non-isomorphic
designs for some cases. The numbers of non-isomorphic OA(n, k, s, d) for differ-
ent n, k and d are given in Table 2.5. In these tables, on the right of the colon is
the number of the non-isomorphic OA(n, k, s,d). The percentage in the bracket
denotes the isomorphism examination efficiency according to projective index set

and |br|. The efficiency is defined by

the number of distinguishable non-isomorphism OA(n, k, s, d)

efficiency =
Y the number of non-isomorphism OA(n, k, s, d)

For the cases of OA(n,4,2,2), OA(n,5,2,3), and OA(n,6,2,4), i.e, k =d+ 2,
our results are consistent with those in Stufken and Tang (2007). For the cases
of k > d + 2, which are not included in Stufken and Tang (2007), our results

show that there exist more and more nen-isomorphic OA(n, k,2,d)’s when k — d

is larger.

Table 2.5: The numbers of non-isomorphic OA(n, k, s, d)
OA(n,k,s,d) : # (efficiency )| OA(n,k,s,d) : # (efficiency )
0A(4,3,2,2) 1 (100.0%) | 0A(12,5,2,2) 2 (100.0% )
OA(8,3,2,2) 2 (1000%) | OA(16,5,2,2) 11 (100.0 % )
0A(12,3,2,2) 2 (100.0%) | OA(20,5,2,2) 11 (90.9%)
0A(16,3,2,2) 3 (1000%) | OA(24,5,2,2) : 63  (921%)
0A(20,3,2,2) 3 (100.0%) | OA(28,5,2,2) : 12T (69.3%)
OA(24,3,2,2) 4 (1000%) | OA(32,5,2,2) 191 (756 %)
OA(28,3,2,2) 4 (1000%) | OA(36,5,2,2) : 1242 (587 %)
0A(32,3,2,2) 5 (100.0%) | OA(40,5,2,2) : 3919 (584 %)
0A(36,3,2,2) 5 (100.0%) | OA(16,5,2,2) 27 (100.0%)

Continued. . .
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OA(n,k,s,d) #  (efficiency ) | OA(n,k,s,d) #  (efficiency )
0A(40,3,2,2) 6 (1000%) | OA(20,5,2,2) 75 (933%)
OA(8,4,2,2) 2 (100.0%) | OA(24,5,2,2) : 1350 (97.7%)
0A(12,4,2,2) 1 (100.0%) | OA(8,4,2,3) 1 (100.0 % )
OA(16,4,2,2) 5 (100.0%) | OA(16,4,2,3) 2 (100.0%)
0A(20,4,2,2) 3 (100.0%) | OA(24,4,2,3) 2 (100.0 % )
OA(24,4,2,2) 10 (100.0% ) | OA(32,4,2,3) 3 (1000 %)
OA(28,4,2,2) 7 (100.0%) | OA(40,4,2,3) 3 (100.0%)
OA(32,4,2,2) 19 (100.0%) | OA(48,4,2,3) 4 (1000 %)
OA(36,4,2,2) 15 (1000%) | OA(56,4,2,3) 4 (100.0%)
OA(40,4,2,2) : 32 (96.9%) | OA(64,4,2,3) 5 (100.0%)
0A(8,5,2,2) 1 (100.0%) | OA(72,4,2,3) 5 (1000 %)
OA(80,4,2,3) 6 (100.0 %) 0OA(32,5,2,4) 2 (100.0 %)
OA(16,5,2,3) 2 (100.0°% ) |- OA(48;5,2,4) 2 (100.0 %)
0A(24,5,2,3) 1 (100.0.% )1 OA(64,5,2,4) 3 (1000%)
0A(32,5,2,3) 5 (100.0:9%) [WOA(80,5,2,4) 3 (100.0%)
0A(40,5,2,3) 3 (100.0 % ) | OA(96,5,2,4) 4 ( 100.0 % )
0A(48,5,2,3) 10 (100.0 %) | OA(112,5,2,4) 4 ( 100.0 % )
OA(56,5,2,3) 7 (100.0%) | OA(128,5,2,4) 5 (1000 %)
OA(64,5,2,3) : 19 (100.0% ) | OA(144,5,2,4) 5 (100.0 %)
OA(72,5,2,3) 15 (100.0 %) | OA(160,5,2,4) 6 (100.0%)
OA(80,5,2,3) : 33 (97.0%) | OA(32,6,2,4) 2 (100.0%)
OA(16,6,2,3) 1 (100.0%) | OA(64,6,2,4) 5 (1000 %)
OA(24,6,2,3) 2 (100.0%) | OA(80,6,2,4) 1 (1000 %)
0A(32,6,2,3) 10 (100.0% ) | OA(96,6,2,4) 9 ( 100.0 % )
0A(40,6,2,3) 9 (889%) | OA(112,6,2,4) 3 (100.0%)
0A(48,6,2,3) 45 (88.9%) | OA(128,6,2,4) 17 ( 100.0 % )
Continued. ..

31



OA(n,k,s,d) : # (efficiency ) | OA(n,k,s,d) : # (efficiency )

OA(64,6,2,3) : 358 (743%) | OA(64,7,2,4) : 7  (100.0%)
0A(24,6,2,3) : 1 (100.0%) | OA(96,7,2,4) : 4  (100.0%)
0A(32,6,2,3) : 17 (1000%) | OA(128,7,2,4) : 123 (943 %)

(
(
(
0A(16,5,2,4) : 1 (1000%) | OA(144,7,2,4) : 35  (286%)

We can find in Table 2.5 that for the cases of £ = d+ 1, the numbers of non-
isomorphic designs are consistent with our discussion about OA(n,d + 1,2,d)
given in Section 2.3.4. From equation (2.9), the number of non-isomorphic
OA(n,d+1,2,d) is [n/2%%1 4 1/2]:-A more detailed list of these non-isomorphic
designs is given in Table 2.6, together with the optimal designs based on mini-
mum aberration criterion. The minimum aberration criterion and the resolution
shown in the table were defined in*Deng and Tang (1999). For the cases of
k > d + 2, the indicator functions of non-isomorphic designs do not follow a
systematic structure as in the case of kK = d + 1. We therefore only present the
numbers of non-isomorphic designs and the minimum aberration designs for the
case OA(n,5,2,2) in Table 2.7 and the case OA(n,6,2,3) in Table 2.8, respec-
tively. In Table 2.5, the 100% efficiency shows that the projective index set and
|br| can completely distinguish OA(n, k,2,d) when k = d + 1. We also find that
when n and k are lager, the isomorphism examination by the projective index
set and |b7| becomes less efficient. The efficiency for OA(36,5,2,2) is 58.7%,
and for OA(114,7,2,4) is only 28%. In next chapter, we will propose a more
efficient method which has better power to classify designs into non-isomorphic
groups. More accurate the non-isomorphism classification is, less time the proce-
dure would spend on the definition-based isomorphism examination within each

group, which is extremely time consuming.
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Table 2.6: The classes of non-isomorphic OA(n, k = d+1,2,d) and the minimum

aberration design in each class

minimum aberration designs
n non-isomorphic designs Resolution F(x)
1x24 |05+ b7Cr, by =0.5 3 0.5 4 0.5Cr
2x 24 | 1+brCr, by € {0,1} 4 1
3x2¢ | 1.5+ brCr, by € {0.5,1.5} 3.67 | 1.5+0.507
4x20 |24+ b7Cr, by € {0,1,2} 4 2
5x2¢ 1 25+brCr, by € {0.5,1.5,2.5} 3.8 2.5+ 0.5Cr
6x2¢ | 34+b7Cr, by € {0,1,2,3} 4 3
7x 2% | 3.5+ brCr, by € {0.5,1.5,2.5,3.5} 3.86 3.5+ 0.5Cr
8x 20 | 44 brCr, by € {0,1,2,3,4} 4 4
9x 20 | 4.5+ brCr, by € {05/1.5,2:5.35:45) | 388 |45+ 0.507
10 x 27 | 54 brCr, by € {0,1/2:3.4.5} 4 5
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Table 2.7: The classes of non-isomorphic OA(n,k = d + 3,2,d = 2) and the

minimum aberration design in each class

# of non- minimum aberration designs
n | isomorphic designs | Resolution F(x)
12 P 3.67 0.375, —0.125, —0.125, 0.125, —0.125,

0.125, 0.125, 0.125, —0.125, —0.125,
0.125, —0.125, —0.125, —0.125, —0.125,

0.125, 0.

16 11 5 0.5,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0, —0.5.

20 11 3.8 0.625, —0.125, 0.125, 0.125, —0.125,

0.125, —0.125, 0.125, —0.125, —0.125,
0:125, —0.125, —0.125, —0.125, —0.125,

—0:125. 0.

24 63 4167 0.7570, 0, 0, 0, 0, 0, 0, 0, 0, 0, —0.25,
~0.25, —0.25, —0.25, 0.25, 0.

28 127 3.86 0.875, —0.125, 0.125, —0.125, —0.125,

0.125, —0.125, —0.125, 0.125, —0.125,
—0.125, —0.125, —0.125, —0.125,

—0.125, 0.125, 0.

32 491 5 1,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,
0, 0.

36 1242 3.89 1.125, —0.125, — 0.125, 0.125, 0.125,

—0.125, —0.125, —0.125, —0.125,
—0.125, 0.125, —0.125, —0.125,
—0.125, —0.125, —0.125, 0.

40 3919 4.8 1.25, 0,0, 0,0, 0, 0, 0, 0, 0, 0, —0.25,
—0.25, —0.25, —0.25, —0.25, 0.

*The numbers in the column of F(X) are b¢7 b123, b124, 6134, b234, 5125, b135, b235,

b1457 b2457 b3457 b12347 612357 612457 b13457 b23484)12345'



Table 2.8: The classes of non-isomorphic OA(n,k = d + 3,2,d = 3) and the

minimum aberration design in each class

# of non- minimum aberration designs
n | isomorphic | resolution F(x)
designs
16 | 1 4 0.25, 0, 0, —0.25, 0, 0, 0, 0, —0.25, 0, 0,
0, 0.25,0, 0, 0, 0,0, 0, 0, 0, 0, 0.
24 | 2 4.67 0.375, —0.125, —0.125, —0.125, 0.125,

—0.125, —0.125, 0.125, —0.125, —0.125,
0.125, 0.125, 0.125, 0.125, —0.125,
~0.125,0, 0,0, 0, 0, 0, 0.

32| 10 6 0.5,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,
0,0, 0,0.0,0,0, —0.5.
40| 9 4.8 0:625, 0.125, 0.125, 0.125, —0.125,

0.125, —0.125, 0.125, —0.125, —0.125,
—0.125, —0.125, 0.125, 0.125, 0.125,
0.125, 0, 0, 0, 0, 0, 0, 0.

48 | 45 467 10.75,0,0,0,0,0,0,0,0,0,0,0,0, 0,
0, 0.25, —0.25, —0.25, —0.25, —0.25, 0,
0, 0.

*The numbers in the column of F(X) are b¢, b1234, b1235, 61245, 51345, b2345, b1236,
b1246> 613467 b23467 b12567 613567 b23567 b14567 b24567 634567 b123457 b123467 6123567 b124567

b13456 ) b23456 ) b123456 .
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Chapter 3

Isomorphism examination based

on counting vector

3.1 Introduction

There exist some methods in the‘literature to-reduce the computation in isomor-
phism examination. They transfer designs into some examination measures that
are easy to calculate and initially -separate the designs into several groups ac-
cording to the values of the examination measure. The initial separation ensures
that designs in different groups are non-isomorphic. It then takes much less time
to examine the isomorphism within each group. Because these methods cannot
guarantee that designs within the same group are isomorphic, we call them ini-
tial screening methods for isomorphism examination. Draper and Mitchell (1968)
proposed a method for isomorphism examination of regular designs by compar-
ing their word length patterns (W LPs), which record the numbers of letters of
the words in their defining contrast subgroups. However, it can be shown by
counterexamples that word length pattern is not sufficient to fully distinguish
non-isomorphic designs. For example, there exit two 2273 fractional factorial de-
signs which are non-isomorphic but have identical word length pattern. Draper

and Mitchell (1970) proposed letter pattern comparison for isomorphism exam-
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ination. Letter pattern records the times of each letter appearing in different
lengths of words. They conjectured that non-isomorphic designs should have
different letter patterns. Nevertheless, Chen and Lin (1991) showed that the
conjecture is not true by giving two non-isomorphic 231716 regular designs with
identical letter pattern. These works only focus on regular designs. Recently,
J-characteristics was introduced in Deng and Tang (1999) and Tang and Deng
(1999) but explicitly defied in Tang (2001). Through J-characteristics, they de-
fined general word length pattern, denoted by GW LP, and confounding frequency
vector, denoted by C'F'V. Both of them extend the concept of W LP from regular
to non-regular designs. The GW LP and CFV were treated as initial screening
methods for isomorphism examination in Katsaounis and Dean (2008). Based on
Hamming distance, which records the number of differences between two rows in
a design, Clark and Dean (2001) developed the distance matrix, denoted by HD,
and recommended a two-step algorithm for the isomorphism examination. Its
first step proposed an initial screening method, called Deseql. Ma, Fang and Lin
(2001) combined Hamming distance and the measures of uniformity to develop
squared centered Lo discrepancy,-denoted by C'D3. Based on the coding theory
approach, Xu (2003) defined the power moments, denoted by K,. Because iso-
morphic designs have the same C'D3 and K,, both are also useful examination

measures for initial screening of non-isomorphic designs.

The technique of projection is widely employed in the initial screening meth-

k

) ways

ods of the isomorphism examination. For a k-factor design, there are (
to project the design onto p factors. These projected designs are called the p-
dimensional projections. We can apply the examination measures mentioned
above on each of the (¥) projections and calculate their frequency. The fre-
quency is referred to as the p-dimensional projection frequency corresponding to

the specific measure and the measure calculated from the whole design matrix

is referred to as the overall measure. Notice that the measure could be a single
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quantity, a vector, or a matrix. For instance, the measure for C'D? is a single
quantity and for C'F'V is a vector, and the frequency of p-dimensional projections
obtained from them are called the p-dimensional C'D3 projection frequency and
the p-dimensional C'F'V projection frequency, respectively. If designs D and D’
are isomorphic, then for any p-dimensional projection in D, there must exist a
corresponding isomorphic p-dimensional projection in D’. The one-to-one corre-
spondence between the projections of D and D’ ensures that their p-dimensional
projection frequency must be identical. In other words, if there exists some p
where 1 < p < k such that the p-dimensional projection frequencies of D and
D’ are different, then D and D’ must be non-isomorphic. Because two designs
with the same overall measure may have different p-dimensional projection fre-
quency but the designs with the same projection frequency always have the same
overall measure, the p-dimensional projection frequency presents more detailed
information than the overall measure.- Therefore, the initial screening method
with projection is more efficient than the method without projection. Ma, Fang
and Lin (2001) and Xu (2005) applied the technique of projection to C'D3 and
K, respectively. We denote their projection frequencies (the collections of p-
dimensional projection frequencies for p = 1,--- k) by FPepz and Pg,. In this
chapter, we also apply the technique of projection to CFV and GW LP, and call
their projection frequencies Popy and Pgwip, respectively. The application of
projection for HD was adopted in the algorithm of Deseql in Clark and Dean
(2001).

In addition to these initial screening methods, there are the complete clas-
sification methods in the literature. A complete classification method for non-
isomorphic designs was developed by Stufken and Tang (2007). Through search-
ing all the solutions over equations of J-characteristics, the complete set of non-
isomorphic OA(n,d + 2,2,d)’s can be obtained. Nevertheless, this method is re-

stricted to the case of £ = d+2 only. Based on Hamming distance and projection,
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Clark and Dean (2001) derived a theorem which offered a complete classification
method for isomorphism examination. Based on the indicator function, Cheng
and Ye (2004) also provided a complete classification method. Katsaounis and
Dean (2008) applied the method based on the indicator function to perform the
isomorphism examination and found that this method was much slower than that
based on the Hamming distance. Katsaounis and Dean (2008) provides a survey

and evaluation for these methods of isomorphism examination.

The purpose of this chapter is to propose an efficient initial screening method
for isomorphism examination based on counting vector, which will be introduced
latter. We find that the operations of sign switch, column and row permuta-
tions on the design matrix are related to the rearrangement of components of
the counting vector. Some sufficient and necessary conditions for two counting
vectors to be isomorphic are therefore developed. The conditions offer us a the-
oretical basis to present an isomorphism examination measure, called the split-N
matriz. The split-N matrix is invariant to the sign switch, column and row per-
mutations so that it can be a measure for theisomorphism examination. We also
find that some existing measures for isomorphism examination can be expressed
as a function of the split-N matrix. In other words, non-isomorphic designs that
can be distinguished by these measures can be classified by the split-N matrix,
but not the other way around. That is, split-N matrix has higher classification
efficiency than these measures. The technique of projection is also applied in
the examination method based on the split-N matrix, which greatly improves the
examination efficiency. Some simplified methods are proposed for the cases of
design with large k. They may have lower efficiency than the split-N matrix but

can greatly reduce the computation time and the storage memory when £k is large.

In Section 3.2, we discuss the transformation of the counting vectors between

the isomorphic designs and provide necessary and sufficient conditions for them.
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In Section 3.3, we define the split-N vectors and use them to construct the split-N
matrix. In Section 3.3.2, we prove that the split-N matrix is more efficient for
isomorphic examination than some other existing measures. In Section 3.3.3, we
apply split-N matrix to the projections of the design and also prove that the
method with projection based on split-N matrix is more efficient than that based
on some other measures. Several simplified methods are proposed in Section

3.3.4. Some examples and computational comparisons are given in Section 3.4.

In the remainder of this section, we will first introduce some notation and
terminology and then review some examination measures mentioned above. Let
7 ={1,--- ,k}, where k is the number of factors of a design. For any m C 7,

define a 1 x 2F vector

Tmj = —1, if j € m,
’ / (3.1)

Xm = (Tm1," ", Tmk), Where -
Zm; = +1, otherwise.

Each x,, can be regarded as a run in the full factorial design. We rank x,,’s in
Yates order for all subsets m of 7. ‘I'he-k-factor full factorial design can then be

represented by the 2% x k matrix

T T T T T T T T T T T
X = ¢7X1:Xz7X127X37X13aX237X1237X47X14>'") ) (3.2)

where the superscript 17" denotes vector transpose and the suffices denote subsets.

For instance, x; represents X1y, Xj2 represents Xy 9y and so forth.

Let h; denote the jth column of X, where j = 1,--- , k. Thus, X can also
be represented by
X = (hy, -+, hy). (3.3)

For any t C 7, we use hy to represent the component-wise product of the columns

h;’s, where j € t. That is, h is a 2F x 1 vector whose m-th component is

Bt = mej. (3.4)

jet
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Ranking h¢’s in Yates order for all subsets t of 7, we obtain the 2% x 2% matrix
H = (h¢7 h17 h27 h127 h37 h137 h237 h1237 h47 h147 e )7 (35)

which is referred to as the model matriz of the k-factor full factorial design X.

Notice that m is the row index and t is the column index of H.

Now let D = (d;;), an n x k matrix, be a k-factor 2-level design with n runs
and levels coded as +1 and —1. Each row of D represents a run and each column
represents a factor. Let N, denote the number of replicate that a run x,, occurs

in design D. Design D can then be equivalently described by the 2% x 1 vector
N = (Ny, N1, Ny, N1g, N3, Ni3, Noz, Nigs, Ny, Nug, -+ )7, (3.6)

where Ny, is ranked in Yates order. The vector N is the counting vector of design
D mentioned in the previous paragraph. -Because it counts the number of the

appearance of the run x,, in D, it can-be used to represent a design.

For any t C 7, let

Jt = ZHdU = Z hthm; (37)
i=1 jet mCT
where h,,¢ denotes the m-th row and the t-th column of H. The J; values for all

subsets t of 7 is referred to as J-characteristics of design D. The 2% x 1 vector

that ranks J-characteristics in Yates order, i.e.,
J = (Jg, J1, J2, J12, J3, J13, Jo3, J123, Ja, J1a, - - - )T, (3.8)

is called J-vector. For the details of .J-characteristics, readers is referred to
Stufken and Tang (2007). Tang (2001) showed that there exist the following

relationships between counting vector and J-vector:
J =HN, (3.9)
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N =2""HJ. (3.10)

Another tool that is related to the counting vector and .J-characteristics is
the indicator function. Indicator function is a polynomial representative of the
equation (3.10). The value of the polynomial is the number of the replicates that
a run occurs in a design and the coefficients of its polynomial terms are equivalent

to the normalized J-characteristics defined in Tang and Deng (1999).

In the following paragraph, we briefly express some examination measures in
terms of the notation mentioned above. Let D be a k-factor 2-level design with
n runs. For t C 7, let ||t|| denote the number of components in t. Deng and

Tang(1999) defined the CFV by

CFV(D) — ((ll,la e 7l1,n)a (l2,17 s :l2,n)7 Ty (lk:,la e >lk,n))7 (311)

where /;; is the number of t’s such that {/;}/=(n+ 1 —i) and ||t|| = j. Note that
|Jg| is always an integer satisfying 0-< ]Jg|'< n. Tang and Deng (1999) defined
GW LP of D by

GWLP(D) = (ay(D),- -, (D)), (3.12)

where

a(D) =) (%)2,3’:1,... k. (3.13)

[[t]1=7

A connection between GW LP and C'D3 was given in Ye (2003) as follows:

13\ " 35\" /9 "L a;(D)
DiD)=(—=) —2(= - 1 L8 14
CDA(D) (12) <32) +(8){ £ (3.14)
Xu (2003) showed that K, is a linear combination of ay(D),---, (D). For

positive integers u,
K, (D) = cyay(D) + cy—10y—1(D) + - - - + c104 (D) + (D) — C, (3.15)
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where ¢, = ci(ui o 5) = [/ (n=1)) S g —1)" R[S 1S . )5 (5
1)j_i(§:ii)]a Co=k"/(n—1) and S(m, j) are Stirling numbers of the second kind.
Based on Hamming distance, Clark and Dean (2001) defined distance matrix HD

as follows. Let ([D]]. . be 1 if, in the jth column of D, the sign in the i;th and

11,2
ioth rows are different, and 0 if they are the same. Then, Z?Zl ¢[D)! Li, counts
the number of columns in which the signs of the i;th and isth rows fail to coin-
cide. The distance matrix HD is defined as a matrix (7, ;,) where the (i, i2)th

component equals

- (DY ., for iy # i,
Tz = 2= Pl e (3.16)
O, for il = ig.
Clark and Dean (2001) pointed out that HD is invariant to the sign switch and

column permutation of D, but not to row permutation.

3.2 Isomorphism of counting vectors

In this section, we discuss how the counting vector is affected by the operation
of the sign switch, column permutation and row permutation. We obtain some
necessary and sufficient conditions for two counting vectors to be isomorphic. Let
D = (d;;) be a k-factor n-run design matrix with counting vector N(D) where
i1 =1,---,nand j = 1,--- , k. Let H be the model matrix of the k-factor full
factorial design X where X and H are given in the equations (3.3) and (3.5),
respectively. For two matrices U; and U, with the same number of rows, let
[U1|U,] denote the I x (mq 4+ ms) matrix formed by arranging the [ x m; matrix
U; in the first m; columns and the [ X msy matrix U, in the last ms columns.

Now let us combine X and N(D) to form the 2 x (k + 1) matrix
[X|N(D)]. (3.17)

In each row of the matrix [X|N(D)], the first k¥ components denote a run and the

last component denotes the number of the replicates of the run in D. Because X
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is the k-factor full factorial design, which contains all possible level combinations
of a k-factor experiment, the [X|N(D)] can be used to fully characterize the de-
sign D. In the following paragraphs, we will discuss how the sign switch, column
and row permutation that are performed on D affect [X|N(D)] and the counting

vector.

Suppose that design D’ is obtained by permutating the rows of the design
D. Because row permutation only changes the order of the runs in D and D’, no
matter how the rows are permutated, the numbers of the replicates of each runs
in D and in D’ are identical, i.e. N(D) = N(D’). In other words, the row permu-
tation has no influence to the counting vector. Therefore, row permutation can
be ignored when we discuss the isomorphism examination from the perspective

of counting vectors.

Let us now focus on the sign switch operation on D. Let 7 = {1,---  k}.
Recall that X = (hy,--- ,hg) and H = (hs hi;hy, his, hs hys- - hyog). Sup-
pose that D* is obtained by switching thesign of factors xy,- -+ , K, of D. Denote
k= {kK1,--+ Ky} and 0 = ||k N t|| for t C 7. Let us characterize design D as

[X|N(D)]. After performing this sign switch operation, the design becomes
[X*IN(D)], (3.18)
where
X' = ((_1)61}117 Ty (_1)6khk‘) (319)

Because in each row of the matrix in (3.18), the last component records the
number of the replicates of the run after sign switch, (3.18) indicates the design
D*. If we rearrange the rows of [X*|IN(D)] so that the X* part is transformed into
X, we will obtain [X|N(D*)]. Suppose that we use matrix operation to represent

the row rearrangement transforming X* into X. Then, there exists a 2F x 2%
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matrix R* such that

R*[X*IN(D)] = [X|N(D)], (3.20)
where
R*X* =X, (3.21)
and
R*N(D) = N(D*). (3.22)

If we can solve the equation (3.21) to obtain R* | then N(D*) can be obtained
from IN(D) by equation (3.22). However, to obtain R* directly from equation
(3.21) is difficult because X* is not a square matrix so that its inverse matrix
does not exist. Therefore, we turn our attention from the design matrices X and
X* to their model matrices H and H*, respectively. Let A be a matrix operator
which expands a design matrix to its model matrix. Take A on both sides of
equation (3.21) to obtain

ARIX™) = NX). (3.23)

Because \(R*X*) = R*A(X*);-equation (3:23) can be written as
R'H"=H, (3.24)
where
H* = ((—1)%hy, (—1)%hy, (=1)%hy, (=1)*2hyy, - -+, (=1)%*hy.p).  (3.25)

The multiplicator (—1)% in equation (3.25) controls the sign switch of the column

h¢. Collect all (—1)%’s and rank them in Yates order of t to form the vector
((_1>6¢7 (_1>617 (_1>627 (_1)6127 o (_1)61“%)11' (326)

Notice that the vector in (3.26) is the column hy in H with t = k. Let S* be
the 2% x 2% diagonal matrix with diagonal being h,. Because H* = HS* from

equation (3.25), equation (3.24) can be written as
R*HS" = H. (3.27)
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Because H™! = 27*H and (S*)~! = S* (S* is an orthonormal and symmetric

matrix), we obtain from equation (3.27) that
R* = H(HS")"' = H(S") 'H! = 27*HS"H. (3.28)

We call S* the sign switch matriz. For a k-factor design, there are 2% different

ways to perform sign switch. Define § as the collection of S*’s for all subsets &

of T.

Let us now consider the column permutation operation on D. Let (ji, j2, - -+ , Jx)
be a permutation of (1,2,--- k). Suppose that D** is obtained from D by the
column permutation (ji, j2, - ,Jjr). After performing this column permutation

operation, the design becomes
[XZIN(D)]; (3.29)

where

X = (hjlvhjw L 7hjk)' (3'30)

Because in each row of the matrix in (3.29), the last component records the
number of the replicates of the run after column permutation, (3.29) indicates
the design D**. If we rearrange the rows of [X**|N(D)] so that the X** part
is transformed into X, we will obtain [X|IN(D**)]. Suppose that we use matrix
operation to represent the row rearrangement transforming X** into X. Then,

there exists a 2% x 2F matrix R** such that

R™[X™N(D)] = [X|N(D™)], (3.31)
where
R”"X™ =X, (3.32)
and
R*”N(D) = N(D™). (3.33)
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Similarly, to obtain R**, let us take A on both sides of equation (3.32), i.e.,
ARX™) = A(X). (3.34)
Because A(R*X*™) = R*A\(X**), equation (3.34) can be written as
R*”"H™ = H, (3.35)

where

H>‘<>l< - (h¢, hjl? hj2, h hj3 Tty hjl]k) (336)

J129

Let Iy be the 2% x 2% identity matrix. Let us denote the columns of I by

Ly = (e¢7 €1, €2, €12, €3, €e13,€23,€123,€4, ... 791---k)7

that is, e; = (1,0,0,0,0,---,0)7, e; = (0,1,0,0,0,-- ,0)7, e = (0,0,1,0,0, -+ ,07,
ern = (0,0,0,1,0---,0)7, and so forth: Let

Chzie = (e¢7 €j15 €jas €j125 €5 Ciijs 1€ 55 35 €41 jajas €jas T ejl"‘jk)' (3'37)
Because H** = HC’"/* from equation (3:36), equation (3.35) can be written as
R*HC"7* = H. (3.38)

Because H™! = 27*H and (C7*Jk)~1 = (Ci-J)T (CHJx is an orthonormal

matrix), we obtain from equation (3.38) that
R* = H(HC k)™t = H(CH ) TH™! = 27F*H(C?7+)TH, (3.39)

We call C/t"Jk the column permutation matriz. For a k-factor design, there are
k! different ways to perform column permutation. Define C as the collection of

C/1i2k’s for all possible permutations (41, j2, -+ ,jx) of (1,2,-++ k).

Let us combine the sign switch and the column permutation operations

together. Suppose that D’ is obtained from D by the sign switch of factors
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K1, , kg and the column permutation (ji,--- ,jx) of (1,--- , k). After perform-

ing these sign switch and column permutation operations, the design becomes
[XIN(D)], (3.40)

where

X' = ((_1)6h hjl’ B (_1)5jkhjk)' (3'41)

Similar to the previous discussion, the matrix in equation (3.40) indicates the

design D’ and there exists a 2¥ x 2% matrix R such that

R[X'|N(D)] = [X|N(D')], (3.42)
where
RX' =X, (3.43)
and
RN(D) =N(D). (3.44)

To obtain R, let us take A on both sides of equation (3.43), i.e.,
ARX) = A(X). (3.45)
Because A\(RX') = RA(X’), equation (3.45) can be written as
RH = H, (3.46)
where

H = ((_1>6¢h¢>7 <_1)§j1 hjl7 (_1)6j2 hj27 <_1)§j1j2hj1j27 ) (_1>6j1mjkhj1"'jk)'
(3.47)
Let S =8* and C = C*"7* where S € S and C € C. Because H = HSC from

equation (3.47), equation (3.46) can be written as

RHSC = H. (3.48)
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Because H™! = 27*H, S7! = S and C~! = C7, we can obtain from equation

(3.48) that
R = H(HSC) ' = HC!S™'H! = 27*HC”SH. (3.49)

Notice that design D* is a special case of D" with (71,72, ,Jx) = (1,2, k)
and D** is a special case of D’ with kK = ¢. The above discussion is summarized

in the following theorem.

Theorem 4. Suppose that D and D' are two k-factor designs with counting vec-
tors N(D) and N(D'), respectively. Two designs D and D' are isomorphic if and
only if there exists a matriz R = 2-"HCTSH, where S € S and C € C, such that

RN(D) = N(D').

Example 2. For the demonstration ‘purpose, let A; be a 3-factor design with
counting vector N(A;) = (1,2,3,4,5,6,7,8)T. Assigning different numbers of
replicates to the runs is intended to make it clear the rearrangement of com-
ponents in the counting vector in later calculations. The model matrix of the

3-factor full factorial design is

1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1
1 -1 -1 1

H= (hdn hl,h2>h12,h3,h13,h237h123) =

e e e e
I
—
I
[
—

Suppose that A, is obtained from 4; by exchanging factors 1 and 3 and switching

the sign of factors 1 and 2. Because we switch the sign of factors 1 and 2, set
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S = S'?. Exchanging factors 1 and 3 is to permute the factors with (j1, j2, j3) =
(3,2,1), so set G273 = C32! obtained from Ig = (e, €1, €2, €12, €3, €13, €23, €123)

by exchanging e; and e; and exchanging e, and e,3. The S'? and C3?! are shown

below.
1 0 000 0 00 100 000 00
0O -1 000 0 0 0 000010 00
0O 0 -1 00 0 0 0 00 1 000 0 O
Su—OOOlOOOO,andC321:00000010
0 0 00 1 0 0 0 0010000 0 O
0 0 000 —1 0 0 00000 10 0
0O 0 000 0 -1 0 000100 00
0o 0 000 0 01 000 00O O0 1
From Theorem 4, we obtain
00010000
000 0O0O0O0 1
0100000 O
R = kaH(C321)T812H X 0. 0 0 0OO1 0O
0.0 1 0 0 0 0 0
0.000 00 0 1 0
10,0 0 0 0 0 0
0.0 0 01 00 0

Therefore, N(D') = RN(D) = (4,8,2;6,3;7,1;

NS
=

Theorem 4 also infers that there exists a relationship between the J-vectors
of two isomorphic designs. Corollary 1 below provides the transformation matrix

for them.

Corollary 1. Suppose that D and D' are two k-factor designs with J-vectors
J(D) and J(D'), respectively. The two designs D and D’ are isomorphic if and
only if there exists a matriz Q = CT'S such that QJ(D) = J(D'), where C € C
and S € S.

Proof. Let N(D) and N(D') be the counting vectors of D and D', respectively.
By Theorem 4, there exists an R such that

RN(D) = N(D'). (3.50)



Multiplying H on both sides of equation (3.50), we obtain
HRN(D) = HN(D'). (3.51)
Because HH = 2¥1,, equation (3.51) can be written as
HR(2"*"HH)N(D) = HN(D'). (3.52)

By substituting 2 *HCTSH for R and J for HN according to equation (3.9),

equation (3.52) becomes
2" *HHCTSHHI(D) = J(D). (3.53)
Equation (3.53) can be reduced to
C'SJ(D) = J(D). (3.54)

The result follows. O

In Theorem 4, we provide a;method thatutilizes the the operations of matri-
ces to find a transformation matrix R for the counting vectors of two isomorphic
designs. However, readers may not want:to-work on such complex operations of
matrices. The following theorem provides an alternative that uses the suffix’s

operation to find the transformation between counting vectors.

Theorem 5. Let D and D' be two k-factor designs with counting vector N(D) and
N(D'), respectively. Let T ={1,--- k}. Let k = {Kk1,--- , Ky}, which is a subset
of T. Let (ji,---,Jk) be a permutation of (1,--- k). Define m’' = J,.,{ji} for
all subsets m of T and aVb =aUb —aNnNb where a and b are the subsets
of T. Design D and D' are isomorphic if and only if there exist a permutation
(J1,-++ 5 Jk) of (1,--- k) and a set k such that the components of N(D) and N(D')

have the following relationship:
N(D') = Nuvs(D) (3.55)
for all subsets m of T .
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Proof. Suppose that the run x,, in D’ is obtained from the run x, in D through

the sign switch of factors in x and the column permutation (ji,--- ,jx). Then
Ny(D) = N (D). (3.56)

To find y, let us separate the operations that transform D to D’ into two parts.
First, suppose that after switching sign of factors in x of D, we obtain another

design, say D*. The run x, in D changes into the run x,, in D*, i.e.,
Ny (D) = Nyyx (D). (3.57)

Now, suppose that after permutating the columns of D* by (jy,- - - , jx), we obtain

the design D’. The run Xy, in D* changes into the run x,, in?’, i.e.,

Nyyi(D*) = N (D). (3.58)
Because D’ is obtained from permutating the columns of D* by (jy,- -+, jk), it is
obvious that
X g g (3.59)
and therefore
yVkek=m' (3.60)

From equation (3.60), it is clear that
(yVK)VE=m'Vk. (3.61)
By expanding the left-hand side of equation (3.61),

(yVE)VE

=(yVkr)Urk—(yVK) Nk
=(yUk—yNK)Uk—(yUrk—yNkr) Nk (3.62)
YUk (k—y )

=Y,

the result follows. O]
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Example 3. We use the designs A; and A, in Example 2 to illustrate the The-
orem 5. The counting vector of A; is N(A;) = (1,2,3,4,5,6,7,8)T = (N, (A;),

Ni(Ay), No(Ay), Nio(Ar), N3(Ar), Nis(Ay), Nog(Ar), Nias(A1))T. Design Ay is
obtained from A; by switching the sign of factors 1 and 2 and exchanging fac-
tors 1 and 3, i.e., k = {k1, Ko} = {1,2} and (j1,J2,73) = (3,2,1). Take the run
x13 = (—1,1,—1) in A; as an example. The number of replicate of x;3 in A; is
Ni3(A;) = 6. First, the sign switch of factors 1 and 2 is to switch the sign of the
first two components in (—1,1, —1), i.e., (1, —1,—1), and then the permutation of
factors 1 and 3 is to exchange the first and third elements in (1, —1, —1). Finally
we obtain (—1, —1,1), which is the run x5 in Ay, i.e., Ni2(A3) = 6. Working on
the sign switch and the column permutation above is equivalent to implementing

the following suffix’s operations,
Ni2(A2) = Nm(Az) = Nmva(AL) = Nigoun(AL) = Nagvia( A1) = Niz(Ar).

The relationship of other runs between two.isomorphic designs can be easily found

by the same rule. The N(Ay) can be obtained by

N(Az) = (Ng(Az), Ni(Az), No(As), Ni2(Az), Na(Az), Niz(As), Naa(Az), Niog(As))"
= (Ngvu (A1), Njyvi (A1), Njpvi (A1), Nijyjovie(Ar)y Nijgui (Ar)s Niy v (A,
Njsjavi(Ar)s Njyjajove (A1)
= (Nyv12( A1), N3v1a(A1), Novia(Ar), Naavia (A1), Niviz(Ar), Navia(Ar),
Napvia(Ar), Naarviz(Ar))"
= (N12(A1), Nios(Ar), Ni( A1), Ni3(Ar), Na(Ar), Nas(Ar), Ng(Ar), Ns(Aq))T
= (4,8,2,6,3,7,1,5)T.
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3.3 Examination measure based on counting vec-

tors

In section 3.2, we present some relationship between the counting vectors of iso-
morphic designs. However, it still a time-consuming task to examine isomorphism
through identifying the sign switch and column permutation operations in the re-
lationship. Based on the counting vector, we propose an examination measure,
called the split-N matriz, which provides a fast and powerful initial screening for
non-isomorphism designs. In the following sections, we prove that isomorphic
designs have the same split-N matrix and isomorphism examination by split-N
matrix is more efficient than most initial screening methods mentioned in Section

3.1

3.3.1 Split-N vectors

To introduce split-N matrix, we define-the positive and negative split-N vector

first.

Definition 1. For a design with counting vector N = (Ny, N1, No, N1o, N3, - - -,
Nyi.p)T, let € be a set operator which ranks the components in a set of non-
negative integers from large to small in a vector. Let T = {1,--- ,k}. For any
non-empty subset t of T, let nyt denote the collection of Ny, ’s where m C T
such that |m N t|| is even. On the other hand, for any non-empty subset t of T,
let ny~ denote the collection of Ny'’s where m C T such that |m N t|| is odd.
Then for any non-empty subset t of T, define the positive split-N vector of t by
N = &ny™ and the negative split-N vector of t by N; = &ny~. The Ny and N

are referred to as split-N vectors of t.
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Table 3.1: Split-N vectors for the design with k = 3

NT = &(Ng, N2, N3, Nog)T Ny = ¢(N1, Ni2, N1z, N123)T
N = &(Ng,Ni,N3, Ni3)T Ny = &(N2, N12, Naz, N123)T
Nf, = &Ny, Ni2,N3,Ni23)T | NI, = &(Ni,Na, Nig, Nag)T
NI = &(Ng, N1, N2, Ni2)T N3 = &(N3, N1z, Naz, N123)T
N, = &(Ng, NoyNiz,Ni23)T | N = &(Ni, N12, N3, Nog)T
Ni; =  &(Ng,Ni,Nag,Ni23)T | Ny = &(N2, N12, N3, N13)T
N3 = &Ny, Niz, N3, No3)T | N3 = &(Ni, Nz, N3, Nig3)T

Table 3.2: Split-N vectors for A,

N (A1) = (7,53, )T | NJ (A1) = (86,427
N (A1) = (6,5,2,1)T | Ny (A1) = (87,437
NLA) = 85407 | Np) = (7,6,3,2)7T
Ni) = 432,)7 | NJ1) = (876,57
N3 (A1) = (86,3, )T | N(41) = (7,54,2)7T
Ni(A) = (87,217 | Ny(4) = (6,54,3)7
NL.(A41) = (71,6,41)7 | Np(A) = (8,5,3,2)T
Take a design with £ = 3_as an-example. Its counting vector is N =

(Ny, N1, Na, Nia, N3, N3, Nog, Nyaz)". Let T-={1,2,3}. For t = 12, the sub-
sets m of 7 such that |[m N t|| iseven'are ¢, {3}, {1,2}, and {1,2,3}. Therefore,
the positive split-N vector of t = 12 is NT;, = £(Ny, N1, N3, N123)”. On the other
hand, the subsets m of 7 such that [[mnNt|| is odd are {1}, {2}, {1, 3}, and {2, 3}.
Therefore, the negative split-N vector of t = 121is N, = £(Ny, Ny, N3, Noz)T. For
the design with k£ = 3, we list in Table 3.1 the positive and negative split-N vectors
for all non-empty subsets t of 7. In Example 2, N(A;) = (1,2,3,4,5,6,7,8)T.
The split-N vectors for A; are given in Table 3.2.

Lemma 1. Let 1,, be the n x 1 vector with all components being one, i.e. 1, =

(1,1,--- , )T, Let J; be as defined in equation (3.7). For a k-factor design,
Jo =15 N — 1L, Ny (3.63)
where t C 7T but t # ¢.
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Proof. In equation (3.1), zm; = —1 if j € m and z,; = +1 otherwise. From
equation (3.4), it is obvious that hme = 1 for those subsets m of 7 such that
|lmNt| is even and hpyy = —1 for those subsets m of 7 such that [[mNt|| is

odd. By applying the result to equation (3.7), the result follows. O

Theorem 6. Let D and D' be two k-factor designs with counting vectors N(D)
and N(D'), respectively. Suppose that D and D’ are isomorphic and D' can be
obtained from D by switching signs of factors k1, --- , kg where g < k and permut-
ing columns with the permutation (ji,--- ,jx) of (1,--- k). Let T ={1,--- ,k}
and define t' = J;co{Ji} fort €T . Let k = {k1, -+ ,Kg} and 0y = ||k Nt'||. The
split-N vectors of D and D' have the relationship as given below.

(1). If 8¢ is even, then Ny*(D') = Ny " (D) and N (D') = Ny~ (D).

(2). If 6y is odd, then Ny (D) =N (D) and N; (D) = N} (D).

Proof. From equations (3.1) and“(3.4),/it is-obvious that

L i fjmnt]| is odd,

1, if [mnNt| is even.

Let m' = (J;,, {Ji} for all subsets m of 7 and t" = |J,,{Ji} for all subsets t of
7. Notice that m is the row index and t is the column index. By substituting

m' V k for m and t’ for t in equations (3.1) and (3.4), we obtain

Xm'vk = (m(m’Vm)la T 7'r(m/\/l’i)k‘)7 (365)
where
T(m'Vk)j = —1, if j em' V&, (3 66)
T(m'vr); = +1, otherwise,
and
hmviey = H (/i) - (3.67)
jet’
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It is obvious that by equations (3.65) and (3.67),

—1, if [|(m'V k) Nt']| is odd,
h(miveye = (3.68)
1, if ||[(m'V k) Nt'| is even.

The subset (m’V k) Nt’ can be expanded as follows,

mve)Nt = (MUrk—m'Nnk)Nt
(3.69)
= m'Nnt'—mNkNt)+(kNt' —m'NkNt).
From equation (3.69), the number of the components in (m’V k) Nt’ is
|[(m'V k)Nt =|m' Nnt'||+ ||s Nt —2[m' NNt (3.70)

Now, let us consider the case that & is even, i.e., ||[x Nt'|| is even. By equation
(3.64), when hpye = —1, |[m Nt is odd and hence |m’Nt'|| is odd. According to
equation (3.70), [[(m’V k) Nt'|| is odd (odd + even — even) and hence h(mviyy =
—1 by equation (3.68). When huy = 15-|jm N t|| is even and hence |m’' Nt'|| is
even. According to equation (3.70), {[(m:V k)N t|| is even (even + even — even)
and hence hmvryy = 1 by equation (3.68). Therefore, when dy is even, hpyy =
R(mrviye for all subsets m of 7. Because N (D) = Nmvi) (D) by Theorem 5,
the result (1) follows by separating N(D') into N (D’) and N, (D’) according to
the signs of the components in the column hy and separating N(D) into N, (D)
and N, (D) according to the signs of the components in the column hy. Let
us now consider the case that dy is odd, i.e., |[c Nt'|| is odd. When hyyy = —1,
|mnNt|| is odd and hence |[m’Nt’|| is odd. Therefore ||(m’V k)Nt'| is even (odd +
odd — even) and hence vy = 1 by equation (3.68). When hme = 1, [mNt||
is even and hence ||m’ Nt’|| is even. We have that ||[(m’V k) Nt'[| is odd (even +
odd — even) and hence hm vy = —1 by equation (3.68). Therefore, when 6y is
odd, hmt = —h(mrveye for all subsets m of 7. Because Ny (D') = Nimvi) (D) by
Theorem 5, the result (2) follows by separating N(D’) into N, (D’) and N, (D)
according to the signs of the components in the column hy and separating N(D)
into N} (D) and N, (D) according to the signs of the components in the column

hy . ]
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Example 4. We use the designs A; and A in Example 2 to illustrate the Theo-
rem 6. Notice that N(Ay) = (Ng(Ayr), Ni(A1), Na(Ay), N1a(Ar), N3(Ay), Nis(Ay),
Nog(Ay), Nigz (A1) = (1,2,3,4,5,6,7,8)T. Let k = {ki,k9} = {1,2} and
(71,72, 73) = (3,2,1). First, take t = 23 as an example. When t = 23, t’' =
J2jz = 12 and 0y = 2 (even). According to Theorem 5, when t = 23, Nj;(As)
can be obtained from Table 3.1 by

N3 (A2) = E(Ngve(Az), Nivi(Az), Nagvr(Az), N1y (As2))"
(Ngvi (A1), Njvi (A1) Niyjavn (A1), Ny javs (A1) T
= €(N¢Vl2<~’41) N3V12(A1) N21\/12(A1) N321\/12(~’41))
= &(Nia(A), Nigz(Ar), No(Ar), Na(Ar))*

— (8,5,4,1)7,

I
I

By Table 3.2, it is obvious that Ng;(As)-equals N5 (A;). Moreover,

No(A2) = E(Navw(Az)s NigyielAs); Navw (Az), Nisue(A2))"
= E(Nivn(Ar)i Vg s (AT N (A1), Ny javis (A1)
= &(Navizear)s Nsaviscar), Nivizcay), Naivio(Ar))T
= E(Ni(Ar), Nis(Ar), Na(Ar), Noz(Ar)T
= (7,6,3,2)T.

By Table 3.2, it is clear that Ny;(A2) equals Ni,(A;). The results verify the
Theorem 6 (1). Let us take t = 3 as another example. When t = 3, t' = j; =1
and 0y = 1 (odd). Similarly, the N3 (As) and N3 (Az) can be obtained by

N3 (A2) = E(Ngvu( A1), NjvilAr), Njpus (A1), Ny v (A1) T
= &(Ngv12(A1), Navia(Ar), Navia(Ar), Nsavia(Ar))"
= {(Ni2(Ar), Nigg(Ar), Ni(Ar), Nig(An))T
= (8,6,4, 2)T
= Ny (A),
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Table 3.3: Relationship of split-N vectors between A; and A,

N (A2) = N;rl (A1) = N;r (A1) Ni (A2) = Nj (A1) = N3 (A1)
Nj(A2) = Nj (A) = Ny (A1) | Ny(A) = N+ (A1) = Nj(4)
Ny (A2) = Nj . (A) = Ny(A) | Np(A) = Nfo(A) = N (A)
Nj(Az) = Nj(A) = Ni(A) |[Ny(A) = Nf(A) = Nf(A)
Ni;(42) = Nj . (A1) = NpRA) | Np(A) = N (A) = Nf(A)
Ny (42) = me(fh) = NL(A) | Ng(A) = N (A) = N4
NT23(A2) = was (A1) = NT23(A1) N;23(A2) = N;uya (A1) = N;23(A1)
and

N3 (A2) = E(Njun( A1), Njyjsvie(Ar)s Nigjsvm (A1), Njyjojsvn (A1)
= {(Nviz(Ar), Narviza(Ar), Narvia(Ar), Naaiviz(Ar))"
= &(Na(Ar), Nag(Ar), No(Ar), Na(A1))"

— (7,5,3,1)7
= Nj(A).

~—

The results verify the Theorem 6-(2).-The:relationship of split-N vectors for all
non-empty subsets t of 7 between A; and As is listed in Table 3.3.

3.3.2 Split-N matrix

Definition 2. Define the priority rule for two vectors as follows. For two n x 1
vectors, A = (ay, -+ ,a,)" and B = (by,--- ,b,)T, A is said to be prior to B,
denoted by A = B, if there ezists a v (< n) such that a; = b; fori < v and a; > b;

fori=wv. When A is prior or equal to B, it is denoted by A = B .

Definition 3. Let Ny = (N,*7 N, ™7)7 if N = N; and Ny = (N7, N7
otherwise. For all Ny’s with |[t|| = j, arrange them in the order defined in

- NY = N, .. The split-N matrix

Definition 2 and write them as N 2 == ()
J

1s then defined by

1)

N = (Ny), -+, Nigy. Ny, - N - NFLD). (3.71)

(&N
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Theorem 7. If D and D' are isomorphic, then N*?(D) = N**(D’).

Proof. Suppose that D’ is obtained from D by switching the sign of factors
K1, ,Kg, and permuting columns by (ji,---,Jjk). Let 7 = {1,---,k} and
t' = Ui} for t € 7. Let G;(D) be the collection of all split-N vectors of
design D with ||t|| = j and G;(D’) be the collection of all split-N vectors of design
D' with |[t'|| = j. By Theorem 6, G;(D) = G;(D’) for j = 1,--- ,k. Because
N*P(D) (N*(D')) is obtained by arranging the split-N vectors in G;(D) (G;(D'))
according to the order in Definition 2 and then merging them into a matrix,

N*?(D) must be identical to N*P(D’). O

Example 5. The split-N matrices of A; and' A5 in Example 2 are

§.8/8 8 8 8 8
P67 6 5 5

64 4 2 3 4 2

s s 53 21 1 1 2
N(A) = N¥(Ap) = 46 76 7 T 7
35555 6 6

2 2 3 4 4 3 4

1 1 1 3 2 2 1

The first three columns correspond to N¢(A;)’s (or N¢(A2)’s) with ||t|| = 1, col-
umn 4 to column 6 correspond to N¢(A;)’s (or N¢(A2)’s) with ||t]] = 2 and the
last column is N3(A;) (or N3(Ay)).

Notice that in the split-N matrices of two isomorphic designs, the difference in
their design matrices caused by row permutation, column permutation, and sign
switch vanishes. The effect of the row permutation on design matrix is vanished

in the split-N matrix because of the use of counting vector. When the counting
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vector is divided into the negative and positive split-N vectors according to Defi-
nition 1 and arranged into N¢’s according to Definition 3, the effect of sign switch
disappears. Finally, by ordering the INy’s to form the split-N matrices accord-
ing to Definition 3, the effect of the column permutation is eliminated. In other
words, split-N matrix is invariant to row permutation, column permutation and
sign switch operations. Theorem 7 shows that when two designs are isomorphic,
their split-N matrices are identical. It implies that for two designs with different
split-N matrices, they must be non-isomorphic. Therefore, split-N matrix can be
used as an initial screening measure for isomorphism examination. Compared to
most initial screening methods mentioned in Section 3.1, the method based on

split-N matrix is more powerful, as shown by the following theorem.

Theorem 8. For two designs D and D',

(a). if N*P(D) = N*P(D'), then CFV(D)=CFV (D),

(b). if CFV (D) = CFV (D), then GWLP(D) = GWLP(D');

(¢). if GWLP(D) = GWLP(D'), their CD3(D) = CD(D') and K,(D) =
K,D') foru=1,--- k.

Proof. Suppose that D and D’ are k-factor designs with n runs. Recall that [;; in
CFV records the number of t’s such that |J;| = (n+ 1 — 1) for all subsets t of 7
with |[t|| = j. Columns 1 to k in N*P(D) are the ordered N¢(D)’s with [|t|| = 1.
Because N¢(D) is composed of Ny (D) and Ny~ (D), and |Jg| = |11, N (D) -
17, \N; (D)| by Lemma 1, the ly1,---,l1, of CFV(D) can be obtained from
columns 1 to k in N*?(D). Other l;;’s for j = 2,--- ;k and ¢ = 1,--- ,n can
be similarly derived from N*P(D). Therefore, CFV (D) is completed determined
by N*(D). Similarly, CFV(D’) is determined by N**(D’). When N*(D) =
N*P(D'), the result (a) follows. If CFV(D) = CFV(D'), the frequencies of J;’s
where ||t|| = j are identical for D and D’'. Because «; is a function of square of
Ji's where ||t|| = j by equation (3.13), a;(D) equals to a;(D’) for j =1,--- , k.
The result (b) follows. By equations (3.14) and (3.15), CD3 and K, are functions
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of GWLP. Therefore, two designs with the same GW LP have the same CD3
and same K,. Results (c) and (d) follow. O

Theorem 8 implies that NP is more powerful in terms of the ability to
classify non-isomorphic designs than other measures appeared in this theorem.
For instance, Theorem 8 (a) shows that if CFV (D) # CFV(D’), N**(D) must
be different from N*P(D’), but if N*?(D) # N**(D’), CFV (D) may still equal
CFV(D'). In other words, non-isomorphic designs that can be distinguished
by CFV can be classified by N*P, but not the other way around. Define the

examination efficiency for measure M by

number of distinguishable non-isomorphism groups by M

ef f(M) =

3.72
number of total non-isomorphic groups ( )

According to Theorem 8, the examination efficiencies of the initial screening mea-

sures mentioned in Theorem & can be ranked as:

ef f(NF) 2 ef f(CFV) 2 ef f(GWLP) Z ef f(CD3), ef f(K.). (3.73)

3.3.3 Projection

The application of the projection to the isomorphism examination has been in-
troduced in Section 3.1. Briefly speaking, for a k-factor design, there are (’;)
p-dimensional projections. We can apply the measures mentioned above on each
of the (’;) projections to obtain a p-dimensional projection frequency. If designs D
and D’ are isomorphic, their p-dimensional projection frequency are identical. In
other words, if there exists some p where 1 < p < k such that the p-dimensional
projection frequencies of D and D’ are different, then D and D’ must be non-

isomorphic. Notice that the classification measures obtained from the projected

matrices reveal more information than that calculated from the original design
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matrix. Two designs may have the same value of a classification measure but
different p-dimensional projection frequencies. Therefore, for any measure, the
initial screening method with projection is more efficient than the method without
projection. The projection frequencies for the measures CFV, GW LP, CD3, K,,,
and HD are denoted by Popy, Pawrp, PCDg, Pk, , and Deseql, respectively. In
this dissertation, we also apply the technique of projection on the split-N matrix to
increase its efficiency for isomorphism examination. We define the p-dimensional
N*P projection frequency in Definition 4. The collection of these p-dimensional
N*P projection frequencies for p = 1,--- |k is referred to as the projection fre-

quency of N*” and denoted by Ppysp.

Definition 4. Let D be a k-factor design. Let T = {1,--- k} and w C T.
Let T—wy = T —w and p = k.= ||w|[. “For all N¢’s where t C T(_w) and
It = j, arrange them in the order-defined in Definition 2 and write them as
J
N
by

= N{Q) e = N{(,_,)). Define the-leave-w-out split-N matrix of design D
J

N°P

_ 1 1 2 2 P
(—w)(D> - (N(1)7 7N >N(1)7"' 7N((12’))7 7N g)))g (374)

(@ ((

where N‘(”i w) is referred to as a p-dimensional split-N matrix. For a given p, there
are (’;) p-dimensional projections and hence there are (’;) p-dimensional split-N
matrices. The frequency of these p-dimensional split-N matrices is called the p-
dimensional N*P projection frequency forp=1,--- k. Whenw = ¢, i.e., p =k,

equation (3.74) is the split-N matriz of design D.

Theorem 9. If D and D' are isomorphic, then Pys»(D) = Pys»(D’).

Proof. When D and D’ are isomorphic, there exists a one-to-one correspondence
between their projections. Therefore, the p-dimensional N*P projection frequency

of D and D’ must be identical. O
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Corollary 2. For two designs D and D',

(a). if Pys»(D) = Pys»(D'), then Popy (D) = Popy(D');

(b). if Pocrpy(D) = Pepy(D'), then Powrp(D) = Pawrp(D');

(¢). if Pewrp(D) = Pewrp(D'), then Pop:(D) = Popz(D') and Pk,(D) =
Py, (D) foru=1,--- k.

Proof. The results directly follow by Theorem 8. m

According to Theorem 9 and Corollary 2, it is clear that

ef [(Pyw) = ef f(Perv) = ef f(Pawwr) = ef f(Pepg), ef f(Pi.)- (3.75)

3.3.4 Simplified methods

To use the split-N matrix to preform-the isomorphism examination for two k-
factor designs, it is required to compare two 2 x (2¥ — 1) matrices. The compu-
tation time and the storage memory dramatically increase when k becomes large.
In this section, we propose some simplified methods based on the split-N matrix

for the designs with large k.

For designs with single replicate, all components in the counting vector are
either 1 or 0. In this case, the isomorphism examination based on N is equiv-
alent to the examination based on the CFV. When the components in the
counting vector are either 1 or 0, N*7 is completely determined by C'F'V and
vice versa. Take the design with counting vector N = (1,1,0,0,1,0,1,1)T as an
example. When |J;| = 1, because |J;| = [(13,,N{ — 11, N¢)| by Lemma 1,
the split-N vectors of t, i.e., N{ and N, must meet one of the following condi-

tions: (a). Nf = (1,1,1,0)7 and N; = (1,1,0,0)7, or (b). Nf = (1,1,0,0)7
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and Ny = (1,1,1,0)T. According to Definition 3, either conditions would give
N; =(1,1,1,0,1,1,0,0). Similar argument can be applied for other values of J;
to obtain Ny. Because the CF'V records the frequency of values of |Ji|’s and N*?
is obtained from Ny’s according to Definition 3, the split-N matrix is completed
determined by C'F'V for the design with single replicate. In other words, the
examination efficiencies of the N*? and C'F'V are identical in this case. Because
CFV requires less storage memory and less computation time, it can be used to
replace N*P to perform the isomorphism examination when the components of

counting vector are either 1 or 0.

The split-N vectors for isomorphic designs have the relationship as given
in Theorem 6. Let us sum up the split-N vectors over t with [[t|| = 7, ie.,
SN/(D) = Zth;Ht”:j(N:“(D) + N; (D)) for j =1,--- ,k, and define the sum of
split-N matriz as

SN*(D) =(SN (D), -, SN*(D)). (3.76)

According to Theorem 7, when designs D and D’ are isomorphic, N*?(D) =
N*?(D’) and hance SN*(D) = SN*(D’) by Theorem 6. It implies that SN*?
can also be used as a measure for the isomorphism examination. In Example 2,

the sum of split-N matrices of A; and A, are

41 44 15
33 34 11
21 20 7
13 10 3

SN*7(A;) = SN(A,) =

Because SN* greatly reduces the dimension of N*” from 2% x (2% —1) to 2¥1 x k,
the isomorphism examination based on SN*” can significantly save the compari-
son time and the storage memory. However, because different N*P’s may generate
the same SIN*P, the examination efficiency of SN*? is lower than than that of N*P.

In practice, we find that the efficiencies of SN*” and N*P are very closed (see the

65



examples given in Section 3.4). When SN*” is applied together with the tech-

nique of projections, we denote its projection frequency as Pgpyse.

For the highly fractional factorial designs, a lot of components in their count-
ing vector are zero. These zero components appear in the bottoms of N{’s and
N;’s, which make the split-N matrix contain many rows with components all
zero. These rows can be ignored to reduce the redundant comparison. For in-
stance, let D be a highly fractional factorial designs. Let N (D) (or Ny T (D))
be the split-N vector that contains the least number, say r, of zero components
among all Ny (D)’s and Ny~ (D)’s. Then from Definition 3, it is clear that in the
split-N matrix, the (2*~! —r+1)th to the 2*~'th rows and the (2¥ —r+1)th to the
2Fth rows are all zero. Let us denote by the split-N* matrix the (2% —2r) x (28 —1)
matrix obtained from the split-N matrix by deleting these zero rows. The result of
Theorem 6 still holds when the split-N"matrix is replaced by the split-N* matrix.
Therefore, the split-N* matrix 'can ‘also be used as a measure for isomorphism
examination. It reduces the dimension of.the split-N matrix from 2% x (2% — 1)
to (28 — 2r) x (2¥ —1). This technique can also be applied to the SN*” to reduce

the dimension from 251 x k to (2*71 —r) x k.

3.4 Some comparisons

In this section, we use three examples to study the classification efficiency of the
methods we propose in the previous sections and compare their performance with

some initial screening methods existing in the literature.

Example 6. Katsaounis and Dean (2008) used two 4-factor designs, denoted in
their paper by df1 and df5, to illustrate the power of their method for isomor-

phism examination. Among all the initial screening methods introduced in their
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paper, such as Deseql, Popz2, Pk,, Poryv, CFVy, 4R-prof, 8R-prof, gen-4R and

ext-4R, only Desql can classify df1 and df5 as non-isomorphic. The two designs

can be represent in terms of counting vectors as follows:

N(df1) = (1,0,1,1,1,3,2,1,1,1,0,2,0,0,0,2)7,

and

N(df5) = (2,0,1,2,1,0,1,0,1,0,3,1,1,2,0,1)7.

The split-N matrices of df1 and df5 are

33 3 3 3 3 3 3 3 3

3

3

3 3 3

0 0 0 1

1
0 0 000 0 O

1 0 0
o o0 o 0000 0 0 0 O O O O0O O
2

1

0 0 0 0 O
0 0 0 0 O

1
1

1

0 0 0 0 0 0 o0 O

N*(df1) =

o o0 o0 o0 0 0 0 0 0 0 0 0 0 0 O

and

3 3 3 3 3

3

3 3 3 3

1 0 0 O
0 0 0 o0 0 0 0 0O 0O 0 0 0 0 0 O
2

0 0 0 0 0 O

1

0

0

0 0
0 0 0 0 0 O

1

0 0 0 0 0 O

1

1

0 0 0 0 O 0 O

N(df5) =

o o0 o0 o0 0 0 0O 0 0 0 0 0 0 0 O
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Because the second columns of N*”(df1) and N*P(df5) are different, the split-

N method can quickly identify the two designs as non-isomorphic. The sum of

split-N matrices are:

20
13
11

SN**(df1) =

(= T Be]

30
21
15
12

9
6
3
0

19
14
10

S = B 3 ©

SO O H N N W w w

and SN*(df5) =

20
15
19

S = B N @

30
21
15
12

9
6
3
0

19
12
12

o = B~ 3 ©

S O H N N W W

Because the first and the third columns of SN*”(df1) and SN*’(df5) are ap-

parently different, the SN* measure can also classify them as non-isomorphic

designs. This example demonstrates how to use our methods to perform the iso-

morphism examination and shows that. although most initial screening methods

fail to distinguish the two designs, our methods still have good performance.

Example 7. Designs B; to Bg are: eight, non-isomorphic OA(32,5,2,2)’s with

counting vectors

)

)

N(B;) = (1,3,1,1,0,0,0,2,1,0,1,0,2,1,2,1,1,0,1,0,2,1,2,1,1,1,1,3,0,2,0,0)7,
N(B,) = (1,1,3,0,0,1,0,2,1,2,0,0,1,1,2,1,1,0,1,1,2,2,0,1,1,1,0,3,1,0,2,0)%,
N(Bs) = (0,0,3,0,2,1,1,1,1,2,1,1,0,2,0,1,1,2,0,2,1,1,0,1,2,0,0,1, 1,0, 3, 1),
N(B,) = (1,1,2,0,0,0,1,3,2,1,1,0,1,2,0,1,1,2,0,1,2,1,1,0,0,0, 1,3,1,1,2,0)7
N(Bs) = (0,0,3,1,1,1,0,2,1,1,1,1,2,2,0,0,2,2,0,0,1,1,1,1,1,1,0,2,0,0,3, 1)T
N(Bs) = (1,0,2,1,2,1,1,0,1,1,0,2,0,2,1,1,1,1,0,2,0,2,1,1,3,0,0,1,0, 1,3,0)%,
N(B;) =(1,0,2,1,2,1,1,0,1,1,0,2,0,2,1,1,1,1,0,2,0,2,1,1,3,0,0, 1,0, 1,3,0)7,
N(Bs) = (0,1,0,1,3,0,1,2,2,2,1,1,0,0,1,1,1,1,2,2,1,1,0,0,1,0, 1,0, 0, 3,2, 1).

Besides N*? and SN*”| we also use the methods CFV, GWLP, CD3, K,, and

HD and their projection versions Popy, Pewrp, Popz, Pk,, and Deseql to per-

form the isomorphism examination. The classification results are presented in
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Table 3.4. The first part of Table 3.4 contains the examination results of N*” and
SIN®P. It shows that even though the projection technique is not applied, the IN*P
can still 100% discriminate the eight non-isomorphic designs, and the simplified
method SN*? is as powerful as N* in this case. The second part contains the
results of CFV, GWLP, CD?, K, and HD. We find that when the projec-
tion technique is not applied, the overall CF'V can only separate these designs
into two groups, {B1, By, Bs, Bg} and {Bs, B3, B7, Bs}. The other overall mea-
sures completely fail to distinguish any of these designs as non-isomorphic. Even
thought the projection technique is adopted, the projection frequency, Popy,
Pewrp, Fopz, Pk, and Deseql, still cannot fully distinguish the eight designs.
The third part on the bottom of the table gives the results of these methods.
It shows that projection frequencies cannot discriminate B; and Bg. In Sec-
tion 3.3.2, equation (3.73) shows that IN*” has higher examination efficiency than
CFV,GWLP, CD3, and K,, but does et indicate how much higher. In this ex-
ample, we find that the efficiency-of N*P is eight, times higher than the efficiencies
of GWLP, CD2%, and K,. We also find thatthe efficiency of HD is only 12.5%
which is mush lower than the efficiency of IN*? for the eight designs. The power
of the projection technique can also be found in this example. With projection,

the efficiency greatly increases from 12.5% to 87.5%.

Example 8. In this example, we perform the isomorphism examination for vari-
ous OA(n, k, s,d)’s using the initial screening methods introduced in this article.
The number of the non-isomorphic OA(n, k, s,d)’s can be found in Stufken and
Tang (2007), Sun, Li, and Ye (2002) and the results in Section 2.5.2. In Tables 3.5
and 3.6, the notation OA(n, k, s, d) : w represents that there are w non-isomorphic
designs in total for the case of OA(n, k, s,d). The following rows show the exam-
ination efficiency and the number of non-isomorphism groups identified by each
method (on the left-hand side and right-hand side of the colon separately). From

the two tables, we find that in most cases, the efficiencies of N*” and SIN*¥ are
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Table 3.4: Result of isomorphism examination for the designs in example 7
Methods Examining result Efficiency
N#P {B1},{B2},{Bs}, {Ba}, {Bs}, {Bs},{Br}, {Bs} 100%
SN*P {B1}, {B2}, {Bs}, {Ba}, {Bs},{Bs}, {B7}, {Bs} 100%

CFv {B1,B4,Bs,Bs},{B2, B3, B7, Bs} 25%
GWLP {B1,B2,Bs, B4, Bs, Bs, Bz, Bs } 12.5%
CD3 {B1, B2, B3, Ba, Bs, Bo, Br, Bs } 12.5%
Ky, {B1,B2,B3,B4, 85,86, 87, B3 } 12.5%
HD {B1, By, Bs, Bs, B, B, Br, B} 12.5%

Porv {B1}, B2}, {Bs}, {Bs}, {Bs},{Be}, {B7, Bs} 87.5%
Pow_rp {B1} B2}, {Bs}, {Ba},{Bs},{Be}, {B7, Bs} 87.5%
Popz {B1},{B2},{B3},{Ba}, {Bs},{Bs}, {B7, Bs} 87.5%

Py, {By1},{B2},{Bs}, {Ba}, {Bs},{Be}, { B, Bs} 87.5%
Deseql {B1},{B2},{Bs},{Ba},{Bs},{Bs}, {B7,Bs} 87.5%

close to 100% and much higher than the other methods. For the cases that N*?
and SN*? cannot fully classify the non-isomorphic designs (i.e., efficiencies are
lower than 100%), the projection frequencies of N*¥ and SN*” can significantly
improve the efficiencies to almost 100%; which is much higher than the efficien-
cies of the other methods. For instance; in OA(36,5,2,2), the efficiencies of N*P
and SN*? are 99.3% and 98.4%, respectively, but it is only 67.0% for HD, 23.1%
for CFV, and 13.8% for the other methods. After the projection technique is
applied, the efficiencies of Pys» and Pgys» can reach to 100% and 99.9%, respec-
tively, but it is only 95.0% for Deseql, and even less than 60.0% for the other
methods. In Section 3.3, equations (3.73) and (3.75) indicate that the initial
screening methods based on N*” and Pys» dominate the methods based on the
other measures except HD and Deseql. In the two tables, we find that only
in the case of OA(20,6,2,2), the efficiency of HD is 1.3% higher than N*F. In
the other cases, N*? and Py has better (or same) performance than HD and
Deseql, respectively. For instance, in the case of OA(16,6,2,2), the efficiency of
N*? is 33.3% higher than the efficiency of HD and in the case of OA(28,5,2,2),
the efficiency of Pys» is 6.3% higher than the efficiency of Deseql. From the two

tables, we also find that the projection technique can greatly enhances the exam-
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ination efficiency. In the case of OA(20,6,2,2), all methods without projection
have poor efficiencies: 69.3% for HD, 68.0% for N*? and SN*?, and 56% for the
other methods. However, the efficiencies of Pys» and Pgys» reach 100%, and it
is 96% for Deseql, and higher than 90% for the other methods. Although the
simplified method based on SIN*? is less efficient than the method based on N*P
as mentioned above, we find in the two tables that the efficiencies of SN*” and
N*P are very close. Even though in the case of OA(32,4,2,2), the efficiencies of
SN*?” and Pgys» are lower than the efficiencies of CF'V and Popy, the SN* and
Pgnsp usually have better performance than the other methods when the number

of non-isomorphic OA(n, k,d, s)’s increases.
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Chapter 4

Summary

In Chapter 2, we adopt the indicator function approach to tackle the problems
of design enumeration and isomorphism examination. For design enumeration,
we propose an assembly method which generates a design from its LOO projec-
tions. Based on a hierarchical structure existing between F*(n,k — 1,2,d) and
F*(n,k,2,d) for k =d+1,d+ 2,4+, we can-sequentially construct all indicator
functions by the assembly method. To save the computation time, we generalize
a method for isomorphism examination in Stufken and Tang (2007) to reduce
the number of indicator functions in F*(n, k,2,d). Although for k£ > d + 2, this
generalization does not allow us to fully classify non-isomorphic O As, it is still an
efficient method to discard most isomorphic indicator functions in F*(n, k, 2, d).
We also propose a new method for isomorphism examination that utilizes some
projection properties such as the projective index set. By applying these meth-

ods, we can efficiently enumerate all non-isomorphic designs for many cases.

In the assembly method, we currently consider all possible combinations
of indicator functions in F*(n,k — 1,2,d) to generate designs in F*(n,k,2,d).
However, because there exist some constraints between the coefficients of LOO
projections, many combinations cannot form an incomplete indicator function.

One of our future work is to identify these constraints so that we can further re-
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duce the computation by quickly eliminating combinations that do not satisfy the
constraints. In Chapter 2, we use two methods, one based on group structure and
the other based on projective index set and |br|, to distinguish non-isomorphic
designs. The two methods are only efficient for small designs. When the run
size or number of factors is large, their performances get worse, i.e., many non-

isomorphic designs cannot be distinguished by the two methods.

In Chapter 3, we adopt the counting vector approach, which is different from
the conventional tools used to study designs, to characterize the fractional facto-
rial designs. Because the components in the counting vector are ranked in Yates
order, we obtain the relationship between the counting vectors of isomorphic de-
signs. The effects of sign switch, column and row permutations on design matrix
are corresponding to the matrix transformation on counting vectors. We obtain
some sufficient and necessary conditions for counting vectors to be isomorphic,
which offer a theoretical basis for-the split-N.method. We also develop an alter-
native method which uses suffix’s operation to quickly obtain the counting vector

from another isomorphic design.

In the split-N method, we split the counting vector according to the signs in
each column of the model matrix. We find that any sign switch, column and row
permutations working on the designs can be regarded as the permutation of the
split-N vectors. We therefore propose the split-N matrix, which is invariant to
the sign switch column and row permutations. The split-N matrix is a powerful
measure for the isomorphism examination. Because the measures CF'V, GWLP,
CD3, and K, are functions of split-N matrix, our method outperform the others
as an initial screening method for isomorphism examination. From some exam-
ples in Section 3.4, we observe that the classification power of N*? is much higher
than the others in many cases. Although there does not exist a functional rela-

tionship between N*” and HD, most cases in Example 8 show that N®P is more
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efficient than HD.

We also find that the projection technique developed for isomorphism ex-
amination can usually improve the classification efficiency. With projection,
some measures can even enhance their examination efficiency for about 50% (see
0A(32,5,2,2) in Example 8). From the examples in Section 3.4, we can find
that among the methods with projection, our method Ppys» have much better
performance for isomorphism examination. Unfortunately, because in the case of
0A(20,7,2,2), the efficiency of Pysr can only reach 98.7% (468/474), it is not a

complete classification method.

There are some issues we would like to point out in the end of this dis-
sertation. When the run size of the designs n becomes large, the dimension of
the hamming distance matrix, (4)x (5, increases quickly so that we need more
computer memory to store the matrix of HD and have to spend more time on
the comparison work. The dimension of split-N matrix, 2% x (2% — 1), is not af-
fected by n. Therefore, when n is very large, split-N matrix seems to be a better
method for isomorphism examination. However, the dimension of split-N matrix
would dramatically increase when the number of factors & becomes large. Under
such a situation, HD becomes a better choice for isomorphism examination be-
cause the dimension of HD is not affected by k. Some simplified methods based

on split-N matrix proposed in Section 3.3.4 can also be considered when £k is large.
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